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Van de voorzitter

Geachte NVTI leden,

Hét evenement van de NVTI staat weer voor de deur: de landelijke NVTI theoriedag. Zoals
elk jaar is het ook nu weer gelukt om vier internationaal bekende sprekers te vinden uit binnen-
en buitenland. Traditiegetrouw spreken zij over zowel de algoritmische, als de logische kant van
de theoretische munt. De NVTI heeft hier een hele traditie hoog te houden: zie http://www.
nvti.nl/speakerslist.html voor een de geweldige sprekerslijst sinds 1995. Ook nu hebben we
hooggespannen verwachtingen van Monika Henzinger, Georgies Gonthier, Jan Friso Groote, en
Monique Laurent.

Het leeuw(inn)endeel van de organisatie van deze dag was in goede handen bij Femke van
Raamsdonk, waarvoor dank. Haar bemoeienis was het gevolg van een wijzing van de samenstelling
en de rolverdeling binnen het bestuur van de NVTI. Op de ledenvergadering van 20 maart 2009
werden nieuwe bestuursleden gekozen: Karen Aardal, Herman Geuvers, Wim Hesselink en Han La
Poutré. Hiermee zijn nu ook Delft en Nijmegen vertegenwoordigd. Afscheid namen we van Gerard
Renardel de Lavalette. Gerard, bedankt!

Deze bestuurswisseling had ook gevolgen voor de rolverdeling: Femke van Raamsdonk is de
nieuwe secretaris geworden, Han La Poutré de nieuwe penningmeester, terwijl ondergetekende
voorzitter werd. Veel dank bij dezen aan Joost Kok, die de vereniging vijf jaar op voortreffelijke
en stabiele wijze geleid heeft.

De andere activiteit van de NVTI is de samenstelling en verspreiding van de nieuwsbrief. Met
dank aan Leen Torenvliet, Jos Baeten en Jan Willem Klop zijn alle oude nieuwsbrieven nu ook
electronisch beschikbaar via www.nvti.nl. Het bestuur heeft besloten Dr. Mariëlle Stoelinga (UT)
als redacteur van de nieuwsbrief aan te stellen; het resultaat hebt u in handen! Hiermee is Joost-
Pieter Katoen afgelost als (hoofd)redacteur van de NVTI nieuwsbrief. Bedankt Joost-Pieter, en
ook dank aan Susanne van Dam die ook dit jaar weer gezorgd heeft voor de vermenigvulding en
verspreiding door het CWI. Hierbij wil ik ook de andere sponsors van NVTI vermelden: Elsevier,
NWO, CWI, IPA en SIKS: Hartelijk dank voor de trouwe sponsoring.

Rest mij alle leden een heel geslaagde en onderhoudende Theoriedag 2010 toe te wensen. Vergeet
vooral niet uw (jonge!) collega’s mee te nemen.

Jaco van de Pol
Voorzitter NVTI

Huidige samenstelling van het bestuur

Prof. Dr. Karen Aardal (TUD)
Prof. Dr. Jos Baeten (TU/e)
Prof. Dr. Mark de Berg (TU/e)
Prof. Dr. Harry Buhrman (CWI en UvA)
Prof. Dr. Herman Geuvers (RU)
Prof. Dr. Wim Hesselink (RUG)
Prof. Dr. Ir. Joost-Pieter Katoen (RWTH en UT)
Prof. Dr. Jan Willem Klop (VU en RU)
Prof. Dr. Joost Kok (UL)
Prof. Dr. John-Jules Meyer (UU)
Prof. Dr. Jaco van de Pol (U Twente), voorzitter
Prof. Dr. Ir. Han La Poutré (CWI, TU/e), penningmeester
Dr. Femke van Raamsdonk (VU), secretaris
Dr. Leen Torenvliet (UvA), webmaster
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Van de redactie

Beste leden van de NVTI,

u leest nu de 14de editie van de NVTI nieuwsbrief. U vindt hierin het programma van de
NVTI dag, mededelingen van de onderzoeksscholen IPA en SIKS en 4, naar mijn mening
zeer interessante wetenschappelijke bijdragen:

Taolue Chen en Wan Fokkink schrijven over hun spannende zoektocht naar eindige
axiomatiseerbaarheid van BCCSP, een basis process algebra. Zij beantwoorden diverse
problemen die al voor lange tijd open stonden, en maken daarmee het plaatje voor de
axiomatiseerbaarheid compleet.

Helle Hansen beschrijft een zeer leesbare beschrijving van een belangrijke bijdrage uit haar
proefschrift: ze geeft een methode om een Mealy machine te synthetiseren uit een
algebraische specificatie van een bit-stream functie. Deze techniek maakt het mogelijk om
hardwarecircuits af te leiden uit algebraische specificaties.

Tim Willemse geeft een overzicht van verificatie door middel van parametric boolean
equation systems, een methode die steeds belangrijker wordt, onder andere omdat deze
model checking en equivalentie checking binnen een framework verenigt.

Cees Witteveen beschrijft hoe je constraint systemen op zo'n manier kunt decomponeren
dat oplossingen voor het globale systeem verkregen kunnen worden uit oplossingen voor de
deelsystemen. Constraint systemen kennen een veelheid van toepassingen (oa model
checking, databases, sensor netwerken) en Witteveen gaat in op een aantal fundamentele
eigenschappen van decompositie.

Tenslotte wil ik Susanne van Dam en Axel Belinfante bedanken voor hun uitstekende
ondersteuning.

Namens de redactie,
Marielle Stoelinga
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Nederlandse Vereniging voor Theoretische Informatica

We are happy to invite you for the Theory Day 2010 of the NVTI. The Dutch
Asssociation for Theoretical Computer Science (NVTI) supports the study of
theoretical computer science and its applications.

NVTI Theory Day 2010
Friday March 12, 2010, 9:30-16:40
Hoog Brabant, Utrecht (close to Central Station)

We have an interesting program with excellent speakers from The Netherlands
and abroad, covering important streams in theoretical computer science. Below
you will find the abstracts. Speakers:

Jan Friso Groote (TU/e)
Monika Henzinger (University of Vienna, Austria)
Georges Gonthier (Microsoft Research)
Monique Laurent (CWI, Tilburg University)

It is possible to participate in the organized lunch, for which registration is
required. Please register with Ms Caroline Waij (cpwaij@few.vu.nl or 020-
5983563) no later than one week before the meeting (March 5, 2010). The
costs of 15 Euro can be paid at the location. We just mention that in the direct
vicinity of the meeting room there are plenty of nice lunch facilities as well.

The NVTI theory day 2010 is sponsored (financially or in kind) by NWO
(Netherlands Organisation for Scientific Research), Elseviers Science, CWI (Dutch
Center of Mathematics and Computer Science) and the Dutch research schools
IPA (Institute for Programming Research and Algorithmics) and SIKS (Dutch
research school for Information and Knowledge Systems).

Please find the full program and abstracts of the lectures below.

Kind regards,
Femke van Raamsdonk,
NVTI secretary.

NVTI  Nieuwsbrief 2010  Pagina 7 van 71



Program of the NVTI Day on Friday March 12, 2010

9.30-10.00: Arrival with Coffee

10.00-10.10: Opening

10.10-11.00: Speaker: Jan Friso Groote (TU/e)
Title: Parameterised Boolean Equation Systems

11.00-11.30: Coffee/Tea

11.30-12.20: Speaker: Monika Henzinger (University of Vienna, Austria)
Title: Algorithmic mechanism design

or how web search engines make money

12.20-12.40: Speaker: Yvette Tuin (NWO)

12.40-14.10: Lunch (see above for registration)

14.10-15.00: Speaker: Georges Gonthier (Microsoft Research)
Title: Beyond the four-colour theorem:

software engineering for mathematics

15.00-15.20: Coffee/Tea

15.20-16.10: Speaker: Monique Laurent (CWI, Tilburg University)
Title: Optimization over polynomials

with sums of squares and semidefinite programming

16.10-16.40: Business meeting NVTI
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Abstracts of the talks of NVTI Day on Friday March 12, 2010

10.10-11.00
Speaker: Jan Friso Groote (TU/e)
Title: Parameterised Boolean Equation Systems
Abstract:
We use formulas of the modal mu-calculus with time and data to express proper-
ties that behavioural models should have. In order to verify the validity of such
formulas, we translate model and formula to a so-called Parameterised Boolean
Equation System (PBES). The formula holds iff the solution of the PBES is
true. The PBES representation is so concise that translating complex models
and complex properties is straightforward and yields relatively concise PBESs
(typically smaller than megabytes). Unfortunately, solving large PBESs is not
so straightforward.

In this talk we present PBESs and provide a number of techniques that
are known to solve them. Gauss elimination, invariants, approximation are
examples. Particularly intriguing is the use of patterns which are very helpful
in certain instances. It is an open question whether this pattern technique can
be lifted to solve any PBES. But if so, it would clearly relate the expressiveness
of PBESs to first order logic.

11.30-12.20
Speaker: Monika Henzinger (University of Vienna, Austria)
Title: Algorithmic mechanism design
or how web search engines make money
Abstract:
This talk presents a new problem in algorithmic mechanism design, namely how
to assign bidders with potentially very different utility functions to items. We
will describe the current state of the art and present a solution for a restricted
set of utility functions. We will also explain why the problem is very relevant
to internet advertisers and to web search engines.
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14.10-15.00
Speaker: Georges Gonthier (Microsoft Research)
Title: Beyond the four-colour theorem:
software engineering for mathematics
Abstract:
While the use of proof assistants has been picking up in computer science, they
have yet to become popular in traditional mathematics. Perhaps this is because
their main function, checking proofs down to their finest details, is at odds
with mathematical practice, which ignores or defers details in order to apply
and combine abstractions in creative and elegant ways. This mismatch parallels
that between software requirements and implementation.

In this talk we will explore how software engineering techniques like component-
based design can be transposed to formal logic and help bridge the gap between
rigor and abstraction, and show how these techniques were instrumental in car-
rying out a fully formal proof of the famous four-colour theorem.

15.20-16.10
Speaker: Monique Laurent (CWI, Tilburg University)
Title: Optimization over polynomials
with sums of squares and semidefinite programming
Abstract:
Polynomial optimization deals with the problem of minimizing a multivariate
polynomial over a feasible region defined by polynomial inequalities. While poly-
nomial time solvable when all polynomials are linear (via linear programming),
the problem becomes hard in general as soon as it involves non-linear polyno-
mials. Just adding the simple quadratic constraints x2

i = xii on the variables,
already makes the problem NP-hard as this models e.g. hard combinatorial
problems like Max-Cut or Max-Clique in graphs.

A natural approach is to consider easier to solve, convex relaxations. The
basic idea, which goes back to work of Hilbert, is to relax non-negative polyno-
mials (which are hard to recognize) by sums of squares of polynomials, a notion
which can be tested efficiently using semidefinite programming algorithms. In
this way hierarchies of efficient convex relaxations can be build. We will present
their main properties. In particular, convergence properties (that rely on real
algebraic geometry representation results for positive polynomials), stopping
criteria and extraction of global minimizers (that rely on results from the dual
moment theory and commutative algebra), error bounds in some special in-
stances (e.g. optimization over the simplex or the hypercube), application to
computing the real solutions to polynomial equations.
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www.win.tue.nl/ipa/

Institute for Programming research and Algorithmics

The research school IPA (Institute for Programming Research and Algorithmics) educates re-
searchers in the field of programming research and algorithmics. This field encompasses the study
and development of formalisms, methods and techniques to design, analyse, and construct software
systems and components. IPA has three main research areas: Algorithmics & Complexity, Formal
Methods, and Software Technology & Engineering. Researchers from nine universities (University
of Nijmegen, Leiden University, Technische Universiteit Eindhoven, University of Twente, Utrecht
University, University of Groningen, Vrije Universiteit Amsterdam, University of Amsterdam, and
Delft University), the CWI and Philips Research (Eindhoven) participate in IPA.

In 1997, IPA was formally accredited by the Royal Dutch Academy of Sciences (KNAW). This
accreditation was extended in 2002 and 2007. In setting its agenda for 2007 - 2012, IPA chose five
focus areas, where we expect important developments in the near future and want to stimulate
collaboration. In the focus area:

Beyond Turing we want to explore novel paradigms of computation that incorporate concepts
that are no longer adequately modeled by the classical Turing machine such as nonuniformity
of memory, adaptivity and mobility.

Algorithms & models for life sciences we wish to apply algorithmic theory and formal models
to contribute to the understanding of biological processes, entities and phenomena.

Hybrid systems we want to continue to contribute to the confluence of systems and control
theory and computer science in integrated methods for modelling, simulation, analysis, and
design of such systems.

Model-driven software engineering we want to study various fundamental aspects of the
model-driven approach to software engineering.

Software analysis we want to make progress in the extraction of facts from source code and
their analysis, to obtain instruments for measuring the various quality attributes of software.

For descriptions of these areas see www.win.tue.nl/ipa/about.html.

Activities in 2009

IPA has two multi-day events per year which focus on current topics, the Lentedagen and the
Herfstdagen. In 2009, the Lentedagen were on Algorithms for Data Analysis and Visualization
and the Herfstdagen were dedicated to Quantitative Methods for Embedded Systems.

IPA organises Courses on each of its major research fields, Algorithms and Complexity, Formal
Methods and Software Technology & Engineering. These courses intend to give an overview of the
research of IPA in these fields, and are organized at regular intervals on a cyclic schedule. In 2009,
the course on Software Technology & Engineering was held. Additionally, a Course on Principles
of Model Checking organized by Joost-Pieter Katoen was offered to the IPA PhD students.
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IPA-ASCI Lentedagen on Algorithms for Data Analysis and Visualization April 15 -
17, Conferentiehotel Guldenberg, Helvoirt
The Lentedagen are an annual multi-day event, dedicated to a specific theme of current interest to
the research community of IPA and ASCI. This year’s Lentedagen were dedicated to the subject
Algorithms for Data Analysis and Visualization.

In numerous applications one wants to analyze large amounts of data, and discover structure
in the data. Sometimes the analysis can be done analytically. In other applications it is useful to
visualize the data in a suitable way, in order to help the user discover the underlying structure. In
these Spring Days we focussed on the algorithmic aspects related to data analysis and visualization.
Algorithmics is one of the core research areas within IPA, while visualization is an important area
within ASCI. The Spring Days reflect this, by bringing together researchers from the two research
schools and thus creating a varied and exciting program.

More information about the program is available through the archive on the IPA-website:
www.win.tue.nl/ipa/archive/springdays2009/.

IPA Herfstdagen on Quantitative Methods for Embedded Systems November 23 - 27,
Hotel Astoria, Noordwijk aan Zee
For the period 2007-2012, IPA has chosen five focus areas where it expects important developments
in the field in the near future. Each year the Herfstdagen are dedicated to one of these areas. This
year the focus was on the hybrid systems area, and in particular on the quantitative analysis of
embedded systems using deterministic, nondeterministic and probabilistic methods.

For actual industrial products, functional correctness of software is usually not enough. Not
alone do timing issues become very important when software is embedded in, and interacting
with, a physical environment, but in order to stay in business, the performance of the system as
a whole has to be higher than that of the competition as well. Finally, in cases where functional
correctness cannot be guaranteed at all, the probability of failure has to be minimized. This calls
for design and analysis methods that allow quantitative statements about a design. The Falldays
this year focussed on deterministic, nondeterministic, probabilistic methods, and their application
when trying to get a grip on the quantitative aspects of embedded systems.

The program for the event was composed by Pieter Cuijpers (TU/e), Mariëlle Stoelinga (UT),
Jozef Hooman (RU), and Michel Reniers (IPA, TU/e). More information about the program is
available through the archive on the IPA-website: www.win.tue.nl/ipa/archive/falldays2009/.

IPA Course on Software Technology & Engineering June 2 - 5, TU/e, Eindhoven
The Course Software Technology & Engineering, which was hosted by IPA at the Technische
Universiteit Eindhoven focussed on the following main areas of research in software technology
and engineering:

• Tree-oriented Programming (Jeroen Fokker)

• Engineering grammars using SDF (Mark van den Brand)

• Software Composition (Christian Krause)

• Software Deployment (Eelco Dolstra)

• Workflow Systems (Rinus Plasmeijer)

• Model Transformation & ATL (Ivan Kurtev)

• Query/Views/Transformation (Ivan Kurtev)

In the course lectures were combined with hands-on tool training. The program of the Course
on Software Technology & Engeneering was composed by Eelco Dolstra (TUD), Jurriaan Hage
(UU), Andres Löh (UU), Michel Reniers (IPA, TU/e), and Eelco Visser (TUD). More infor-
mation about the program and contents is available through the archive on the IPA-website:
www.win.tue.nl/ipa/archive/stecourse2009/.
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Course on Principles of Model Checking September 29 - October 2 and October 8+9, UT,
Enschede
A prominent verification technique that has emerged in the last thirty years is model checking,
that systematically checks whether a model of a given system satisfies a property such as deadlock
freedom, invariants, or request-response. This automated technique for verification and debug-
ging has developed into a mature and widely-used industrial approach with many applications in
software and hardware.

This course provided an introduction to the theory of model checking and its theoretical com-
plexity. It introduced transition systems, safety, liveness and fairness properties, as well as omega-
regular automata. It then covered the temporal logics LTL, CTL and CTL*, compared them, and
treated their model-checking algorithms. Techniques to combat the state-space explosion problem
are at the heart of the success of model checking. The course provided an overview of an important
class of such techniques, namely abstraction. Finally, model checking of timed automata and of
probabilistic automata was considered. The course consisted of lectures and active involvement in
exercise classes.

In 2008, the ACM awarded the prestigious Turing Award - the Nobel Prize in Computer
Science - to the pioneers of Model Checking: Ed Clarke, Allen Emerson, and Joseph Sifakis. Why?
Because model checking has evolved in the last twenty-five years into a widely used verification
and debugging technique for both software and hardware.

It is used (and further developed) by companies and institutes such as IBM, Intel, NASA,
Cadence, Microsoft, and Siemens, to mention a few, and has culminated in a series of mostly freely
downloadable software tools that allow the automated verification of, for instance, C#-programs
or combinational hardware circuits.

Subtle errors, for instance due to multi-threading, that remain undiscovered using simulation
or peer reviewing can potentially be revealed using model checking. Model checking is thus an
effective technique to expose potential design errors and improve software and hardware reliability.

But how does it work, that is, what are its underlying principles? That was exactly the focus
of this 6 day course! It is shown that model checking is based on well-known paradigms from
automata theory, graph algorithms, logic, and data structures. Its complexity is analyzed using
standard techniques from complexity theory.

The course was taught by Joost-Pieter Katoen. Joost-Pieter Katoen is a professor at the RWTH
Aachen University (since 2004) and is associated to the University of Twente. He received his PhD
in 1996 on a dissertation on true concurrency semantics. His research interests are concurrency
theory, model checking, timed and probabilistic systems, and semantics. He co-authored more
than 120 journal and conference papers, and recently a comprehensive book (with Christel Baier)
on Principles of Model Checking (MIT Press) which provides the basis for this course.

For more information on the contents of the course please visit the webpage of the course:
http://www-i2.informatik.rwth-aachen.de/i2/principles/.

IPA Ph.D. Defenses in 2009

M.H.G. Verhoef (RU, January 21)
Modeling and Validating Distributed Embedded Real-Time Control Systems
Promotor: prof.dr. F.W. Vaandrager. Co-promotor: dr. J.J.M. Hooman
IPA Dissertation Series 2009-01

M. de Mol (RU, March 4)
Reasoning about Functional Programs: Sparkle, a proof assistant for Clean
Promotor: prof.dr.ir. M.J. Plasmeijer. Co-promotor: dr. M.C.J.D. van Eekelen
IPA Dissertation Series 2009-02

M. Lormans (TUD, January 12)
Managing Requirements Evolution
Promotor: prof.dr. A. van Deursen
IPA Dissertation Series 2009-03
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M.P.W.J. van Osch (TU/e, February 10)
Automated Model-based Testing of Hybrid Systems
Promotores: prof.dr. J.C.M. Baeten, prof.dr.ir. J.E. Rooda. Co-promotor: dr. S.P. Luttik
IPA Dissertation Series 2009-04

H. Sozer (UT, January 29)
Architecting Fault-Tolerant Software Systems
Promotor: prof.dr.ir. M. Akşit. Co-promotor: dr.ir. B. Tekinerdoğan
IPA Dissertation Series 2009-05

M.J. van Weerdenburg (TU/e, April 1)
Efficient Rewriting Techniques
Promotores: prof.dr.ir. J.F. Groote, prof.dr. M.G.J. van den Brand. Co-promotor: dr.ir. M.A.
Reniers
IPA Dissertation Series 2009-06

H.H. Hansen (VUA, May 14)
Coalgebraic Modelling: Applications in Automata Theory and Modal Logic
Promotor: prof.dr. J.J.M.M. Rutten. Co-promotores: dr. Y. Venema, dr. C.A. Kupke
IPA Dissertation Series 2009-07

A. Mesbah (TUD, June 19)
Analysis and Testing of Ajax-based Single-page Web Applications
Promotor: prof.dr. A. van Deursen
IPA Dissertation Series 2009-08

A.L. Rodriguez Yakushev (UU, May 20)
Towards Getting Generic Programming Ready for Prime Time
Promotores: prof.dr. J.Th. Jeuring, prof.dr. S.D. Swierstra
IPA Dissertation Series 2009-9

K.R. Olmos Joffré (UU, May 27)
Strategies for Context Sensitive Program Transformation
Promotor: prof.dr. S.D. Swierstra. Co-promotor: dr. E. Visser
IPA Dissertation Series 2009-10

J.A.G.M. van den Berg (RU, July 2)
Reasoning about Java programs in PVS using JML
Promotor: prof.dr. B.P.F. Jacobs. Co-promotor: dr.ir. E. Poll
IPA Dissertation Series 2009-11

M.G. Khatib (UT, June 11)
MEMS-Based Storage Devices. Integration in Energy-Constrained Mobile Systems
Promotor: prof.dr. P.H. Hartel
IPA Dissertation Series 2009-12

S.G.M. Cornelissen (TUD, June 23)
Evaluating Dynamic Analysis Techniques for Program Comprehension
Promotor: prof.dr. A. van Deursen. Co-promotor: dr. A.E. Zaidman
IPA Dissertation Series 2009-13

D. Bolzoni (UT, June 25)
Revisiting Anomaly-based Network Intrusion Detection Systems
Promotores: prof.dr. P.H. Hartel, prof.dr. S. Etalle
IPA Dissertation Series 2009-14

H.L. Jonker (TU/e, August 25)
Security Matters: Privacy in Voting and Fairness in Digital Exchange
Promotores: prof.dr. S. Mauw, prof.dr. J.C.M. Baeten. Co-promotor: dr. J. Pan
IPA Dissertation Series 2009-15

M.R. Czenko (UT, June 26)
TuLiP - Reshaping Trust Management
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Promotores: prof.dr. P.H. Hartel, prof.dr. S. Etalle
IPA Dissertation Series 2009-16

T. Chen (VUA, September 21)
Clocks, Dice and Processes
Promotores: prof.dr. W.J. Fokkink, prof.dr. J.C. van de Pol
2009-17

C. Kaliszyk (RU, September 3)
Correctness and Availability: Building Computer Algebra on top of Proof Assistants and making
Proof Assistants available over the Web
Promotor: prof.dr. J.H. Geuvers. Co-promotor: dr. F. Wiedijk
IPA Dissertation Series 2009-18

R.S.S. O’Connor (RU, October 5)
Incompleteness & Completeness: Formalizing Logic and Analysis in Type Theory
Promotor: prof.dr. J.H. Geuvers. Co-promotor: dr. B. Spitters
IPA Dissertation Series 2009-19

B. Ploeger (TU/e, August 27)
Improved Verification Methods for Concurrent Systems
Promotores: prof.dr.ir. J.F. Groote, prof.dr.ir. J.J. van Wijk. Co-promotor: dr.ir. T.A.C. Willemse
IPA Dissertation Series 2009-20

T. Han (UT, September 25)
Diagnosis, Synthesis and Analysis of Probabilistic Models
Promotor: prof.dr.ir. J.-P. Katoen
IPA Dissertation Series 2009-21

R. Li (UL, October 6)
Mixed-Integer Evolution Strategies for Parameter Optimization and Their Applications to Medical
Image Analysis
Promotor: prof.dr. T.H.W. Bäck. Co-promotor: dr. M.T.M. Emmerich
IPA Dissertation Series 2009-22

J.H.P. Kwisthout (UU, October 29)
The Computational Complexity of Probabilistic Networks
Promotores: prof.dr. J. van Leeuwen, prof.dr.ir. L.C. van der Gaag
IPA Dissertation Series 2009-23

T.K. Cocx (UL, December 2)
Algorithmic Tools for Data-Oriented Law Enforcement
Promotor: prof.dr. J.N. Kok. Co-promotor: dr. W.A. Koster
IPA Dissertation Series 2009-24

A.I. Baars (UU, December 9)
Embedded Compilers
Promotor: prof.dr. S.D. Swierstra
IPA Dissertation Series 2009-25

M.A.C. Dekker (UT, December 2)
Flexible Access Control for Dynamic Collaborative Environments
Promotores: prof.dr. P.H. Hartel, prof.dr. S. Etalle
IPA Dissertation Series 2009-26

J.F.J. Laros (UL, December 21)
Metrics and Visualisation for Crime Analysis and Genomics
Promotor: prof.dr. J.N. Kok. Co-promotor: dr. W.A. Koster
IPA Dissertation Series 2009-27
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Activities in 2010

IPA is planning several activities for 2010, including the Lentedagen (April 21-23) which will be
dedicated to Multicore computing, the Course on Algorithms & Complexity (TU/e, Eindhoven),
and the Herfstdagen (November). More information on these events will appear on the IPA-website
as dates and locations for these events are confirmed.

Addresses

Visiting address Postal address

Technische Universiteit Eindhoven IPA, Fac. of Math. and Comp. Sci.
Main Building HG 7.22 Technische Universiteit Eindhoven
Den Dolech 2 P.O. Box 513
5612 AZ Eindhoven 5600 MB Eindhoven
The Netherlands The Netherlands

tel. (+31)-40-2474124 (IPA Secretariat)
fax (+31)-40-2475361
e-mail ipa@tue.nl
url www.win.tue.nl/ipa/
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School for Information and Knowledge Systems (SIKS) in 2009 
 
 
Richard Starmans (UU) 
 
 
 
Introduction 
SIKS is the Dutch Research School for Information and Knowledge Systems. It was founded in 
1996 by researchers in the field of Artificial Intelligence, Databases & Information Systems and 
Software Engineering. Its main concern is research and education in the field of information and 
computing sciences, more particular in the area of information and knowledge systems.The 
School currently concentrates on seven focus areas in the IKS field: Agent Technology, 
Computational Intelligence, Knowledge Representation and Reasoning, Web-based Information 
Systems, Enterprise Information Systems, Human Computer Interaction, and Data Management, 
Storage and Retrieval.  
 
SIKS is an interuniversity research school that comprises 12 research groups from 10 universities 
and CWI. Currently, over 450 researchers are active, including 200 Ph.D.-students. The Vrije 
Universiteit in Amsterdam is SIKS' administrative university, and as off January 1 2006 Prof.dr. 
R.J. Wieringa (UT) was appointed scientific director. The office of SIKS is located at Utrecht 
University. SIKS received its first accreditation by KNAW in 1998 and its first re-accreditation in 
2003. In June 2009 SIKS was re-accredited for another period of 6 years. 
  
 
Activities 
We here list the main activities (co-)organized or (co-)financed by SIKS. We distinguish basic 
courses, advanced courses and other activities (including master classes, workshops, one-day 
seminars, conferences, summer schools, doctoral consortia and research colloquia) 
  
 
Basic courses: 
 
 
“Learning and Reasoning”, May 25-26, 2009, Landgoed Huize Bergen, Vught 
Course directors: Dr. A. Ten Teije (VU), Dr. P. Groot (RUN) 
 
“Information Retrieval”, May 27-28, 2009, Landgoed Huize Bergen, Vught 
Course director: Prof. dr. ir. Th. Van der Weide (RUN) 
 
“Research methods and methodology for IKS", 25-27 November, 2009, Conference Center 
Zonheuvel, Doorn 
Course directors: Dr. H. Weigand (UvT), Prof.dr. R.J. Wieringa (UT), Prof.dr. H. Akkermans 
(VUA), Prof.dr. J.-J.Ch. Meyer (UU), Dr. R.J.C.M. Starmans (UU). 

“Agent Technology”, December 07-08, 2009, Landgoed Huize Bergen, Vught  
Course directors: Prof. dr. C.M. Jonker (TUD), Prof. dr. J.-J.Ch. Meyer (UU), Prof. dr. C. 
Witteveen (TUD). 
 
“System and Architecture Modeling”, 09-10 December 2009, Landgoed Huize Bergen, Vught 
Course directors: Dr. P. van Eck (UT), Prof.dr. W.-J. van den Heuvel (UvT), Dr. M. Jeusveld 
(UvT) 
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Advanced courses: 
 
 
“Human Technology Interaction”, January 26-30, 2009, Best Western Hotel, Almen 
Course director: Prof. dr. C.M. Jonker (TUD) 
 
“Organisational Principles of IKS”, February 16-17 2009, Woudschoten, Zeist. 
Course director: Dr. V. Dignum (UU) 
 
“Probabilistic Methods for Entity Resolution and Entity Ranking”, April 20-21, 2009, Woudschoten, 
Zeist 
Course directors: Dr. ir. Djoerd Hiemstra (UT), Dr. ir. Maurice van Keulen (UT)  
 
“Summer course on Datamining”, 24-27 August 2009, Maastricht 
Course director: Dr. E. Smirnov (UM) 
 
“The Semantic Web”, September 24-25, 2009, Mitland Hotel, Utrecht 
Course directors: Dr. P. Cimiano (TUD), Dr. S. Wang (VU) 
 
AI for Games”, October 05-06, 2009, Eindhoven 
Course directors: Dr. P. Spronck (OU/UvT) 
 
Process Mining and Data Mining, October 26-27, De Zwarte Doos, Eindhoven 
Course directors: Prof.dr.  W. van der Aalst (TUE), Prof.dr. P. de Bra (TUE), Dr. T. Calders 
(TUE), Dr. B. van Dongen (TUE), Dr. M. Pechenizkiy (TUE), Dr. T. Weijters (TUE)  
 
 
Other activities: 
 
• Conference: Benelearn 09, May 18-19, 2009, Tilburg 
• Conference: BNAIC 09, October 29-30, Eindhoven  
• Conference: Dutch-Belgian Database Day 2009 (DBDBD), November 30, 2009, Delft 
• Conference: DIR 2009, February 02-03, 2009, Enschede 
• Conference: “SIKS-Conference on Enterprise Information Systems” (EIS), October 23, 2009 

Ravenstein 
• Conference: “Second International Conference on Human-Robot Personal Relationships”, 11-

12 June, Tilburg 
• Conference: “International Conference on Advanced Information Systems Engineering (CAiSE 

2009)”, June 08-12 2009, Amsterdam 
• Conference: Business Process Modeling (BPM 2009), September 07-10, Ulm, Germany 
• Masterclass: “Evolutionary Agent-Based Policy Analysis ”, April 16, 2009, Amsterdam 
• NVTI Theory Day 2009, March 20, 2009, Utrecht 
• SIKS-PhD Career Day, February 18, Utrecht 
• SIKS-day 2009, November 16, 2008, Utrecht 
• SIKS-PhD Annual Cultural Event, September 11, 2009, Hilvarenbeek 
• Seminar: “Second SIKS/Twente Seminar on Searching and Ranking in Enterprises”, 24 June, 

2009, Enschede 
• Seminar: UU-SIKS Seminars (2 times in 2009) 
• Seminar: 2*20 years of communication, organization and IS, December 18,2009, Utrecht 
• SIKS-Agent Colloquia (10 times in 2009), Utrecht/Delft/Amsterdam 
• SIKS-MICC Colloquia (6 times in 2009), Maastricht 
• SIKS-TICC Colloquia (8 times in 2009), Tilburg 
• Summerschool EASSS 2009, August 31 - September 04, 2009, Torino (Italy) 
• Summerschool SSAIE 2009, June 16 - 19, 2009, Crete (Greece)  
• Symposium: Innovating IT; Surfing the Fourth Wave, March 05, 2009, Tilburg 
• Symposium: “In Search of Privacy”, June, 25, 2009, Nijmegen 
• Symposium: Method Engineering in Software Product Management,Sept 9, 2009, Utrecht 
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• Workshop: Rich Cognitive Models for Policy Design and Simulation, January 12-16, 2009, 
Leiden 

• Workshop: International School on Collective Intelligence and Evolution DECOI 2009 
February 23-27, 2009, Leiden 

• Workshop: International Workshop "Engineering Societies in the Agents' World" (ESAW 
2009), November 18-20, 2009, Utrecht 

• Workshop: International Workshop on Value Modeling and Business Ontologies, February 9-
10, 2009, Stockholm (Sweden) 

• Workshop: International Workshop on Value Modeling and Business Ontologies, December 
21-22, 2009, Amsterdam 

 
 
 
 
Ph.D.-defenses in 2009 
 
In 2009 46 researchers successfully defended their Ph.D.-thesis and published their work in the 
SIKS-dissertation Series. 
 
 
2009-01 
Rasa Jurgelenaite (RUN) 
Symmetric Causal Independence Models 
Promotor: Prof.dr. T.M. Heskes (RUN) 
Promotie: 19 January 2009 
 
2009-02 
Willem Robert van Hage (VU) 
Evaluating Ontology-Alignment Techniques 
Promotor: Prof.dr. G. Schreiber (VU) 
Promotie: 19 January 2009n 
 
2009-03 
Hans Stol (UvT) 
A Framework for Evidence-based Policy Making Using IT  
Promotor: Prof.dr. H.J. Van den Herik (UvT) 
Promotie: 21 January 2009 
 
2009-04 
Josephine Nabukenya (RUN) 
Improving the Quality of Organisational Policy Making using Collaboration Engineering 
Promotores: Prof. dr. E. Proper (RUN), Prof. dr. ir. G.- J. de Vreede, University of Nebraska at 
Omaha, USA  
Copromotor: Dr. P. van Bommel (RUN) 
Promotie: 03 March 2009 
 
2009-05 
Sietse Overbeek (RUN) 
Bridging Supply and Demand for Knowledge Intensive Tasks - Based on Knowledge, Cognition, 
and Quality 
Promotor: Prof. dr. E. Proper (RUN) 
Promotie: 24 April 2009  
 
2009-06 
Muhammad Subianto (UU)  
Understanding Classification  
Promotor: Prof.dr.A.P.J.M. Siebes (UU) 
Promotie: 14 January 2009  
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2009-07 
Ronald Poppe (UT) 
Discriminative Vision-Based Recovery and Recognition of Human Motion 
Promotor: Prof. dr. ir. A. Nijholt (UT) 
Copromotor: Dr. M. Poel (UT)  
Promotie: 02 April 2009  
 
2009-08 
Volker Nannen (VU)  
Evolutionary Agent-Based Policy Analysis in Dynamic Environments 
Promotores: Prof.dr. J. van den Bergh (VU), Prof.dr. A.E. Eiben (VU) 
Promotie: 16 April 2009  
 
2009-09 
Benjamin Kanagwa (RUN) 
Design, Discovery and Construction of Service-oriented Systems 
Promotor: Prof. dr. ir. Th. van der Weide (RUN) 
Promotie: 21 April 2009  
 
2009-10 
Jan Wielemaker (UVA)  
Logic programming for knowledge-intensive interactive applications 
Promotores: Prof. dr. B.J. Wielinga (UvA), Prof. dr. A.Th. Schreiber (VU) 
Promotie: 12 Juni 2009  
 
2009-11 
Alexander Boer (UVA) 
Legal Theory, Sources of Law & the Semantic Web  
Promotor: Prof. dr. T. M. van Engers (UVA) 
Copromotores: Prof. dr. J. A. P. J. Breuker (UVA), Dr. R. G. F. Winkels (UVA) 
Promotie: 25 Juni 2009  
 
2009-12 
Peter Massuthe (TUE, Humboldt-Universitaet zu Berlin) 
Operating Guidelines for Services  
Promotores:Prof.dr. Kees van Hee (TUE), prof.dr. Wolfgang Reisig (Humboldt-Universitaet zu 
Berlin)  
Copromotor;prof.dr. Karsten Wolf (Universitaet Rostock)  
Promotie: 21 April 2009  
 
2009-13 
Steven de Jong (UM) 
Fairness in Multi-Agent Systems  
Promotor: Prof. dr. H.J. van den Herik (UvT), Prof.dr. E.O. Postma (UvT) 
Copromotor: Dr. K. Tuyls (TUE) 
Promotie: 04 June 2009  
 
2009-14 
Maksym Korotkiy (VU) 
From ontology-enabled services to service-enabled ontologies (making ontologies work in e-
science with ONTO-SOA)  
Promotores:Prof.dr. J. Top (VU)  
Promotie: 18 june 2009  
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2009-15 
Rinke Hoekstra (UVA) 
Ontology Representation - Design Patterns and Ontologies that Make Sense 
Promotor: Prof.dr. J.A.P.J. Breuker (UVA)  
Copromotores: Prof.dr. T.M. van Engers (UVA), Dr. R.G.F. Winkels (UVA)  
Promotie: 18 September 2009  
 
2009-16 
Fritz Reul (UvT) 
New Architectures in Computer Chess  
Promotor: Prof.dr. H.J. van den Herik (UvT)  
Copromotor: Dr. J.W.H.M. Uiterwijk (UM) 
Promotie: 17 june 2009  
 
2009-17 
Laurens van der Maaten (UvT) 
Feature Extraction from Visual Data 
Promotores: Prof.dr. E.O.Postma (UvT), Prof.dr. H.J. van den Herik (UvT)  
Copromotor: Dr. A.G. Lange (RACM)  
Promotie: 23 June 2009  
 
2009-18 
Fabian Groffen (CWI) 
Armada, An Evolving Database System  
Promotor: Prof. dr. M.L. Kersten (CWI/UvA) 
Copromotor: Dr. S. Manegold (CWI) 
Promotie: 10 june 2009  
 
2009-19 
Valentin Robu (CWI) 
Modeling Preferences, Strategic Reasoning and Collaboration in Agent-Mediated Electronic 
Markets 
Promotor: Prof.dr. H. La Poutre (CWI/TUE)  
Promotie: 02 July 2009  
 
2009-20 
Bob van der Vecht (UU) 
Adjustable Autonomy: Controling Influences on Decision Making  
Promotor: Prof.dr. J.-J. Ch. Meyer (UU) 
Copromotor: Dr. F.Dignum (UU) 
Promotie: 06 July 2009  
 
2009-21 
Stijn Vanderlooy(UM) 
Ranking and Reliable Classification 
Promotor: Prof.dr. H.J. van den Herik (UvT), Prof.dr. Th.A. de Roos (UM), Prof.dr.rer.nat. E. 
Hüllermeier, Philipps-University of Marburg, Germany  
Promotie: 01 July 2009  
 
2009-22 
Pavel Serdyukov (UT) 
Search For Expertise: Going beyond direct evidence  
Promotor: Prof.dr. P.M.G. Apers (UT) 
Copromotor: Dr. D. Hiemstra (UT) 
Promotie: 24 June 2009  
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2009-23 
Peter Hofgesang (VU) 
Modelling Web Usage in a Changing Environment 
Promotor: Prof.dr. A.E. Eiben (VU)  
Copromotor: Dr. W. Kowalczyk (VU)  
Promotie: 08 October 2009  
 
2009-24 
Annerieke Heuvelink (VU) 
Cognitive Models for Training Simulations  
Promotor: Prof. dr. J. Treur (VU) 
Copromotor: Dr. K. van den Bosch (TNO), Dr. M. C. A. Klein (VU) 
Promotie: 11 September 2009  
 
2009-25 
Alex van Ballegooij (CWI) 
"RAM: Array Database Management through Relational Mapping"  
Promotor: Prof. dr. M.L. Kersten (CWI/UvA) )  
Copromotor: Prof. dr. A.P. de Vries (TUD)  
Promotie: 17 September 2009  
 
2009-26 
Fernando Koch (UU) 
An Agent-Based Model for the Development of Intelligent Mobile Services  
Promotores: Prof. Dr. J.-J. Ch. Meyer (UU), Prof. Dr. E. Sonenberg (University of Melbourne) 
Copromotor: Dr. F. Dignum (UU) 
Promotie: 05 October 2009  
 
2009-27 
Christian Glahn (OU) 
Contextual Support of social Engagement and Reflection on the Web 
Promotores: Prof. dr. E.J.R. Koper (OU), Prof.dr. M. Specht (OU)  
Promotie: 18 September 2009  
 
2009-28 
Sander Evers (UT) 
Sensor Data Management with Probabilistic Models  
Promotores:Prof.dr.ir. P.M.G. Apers (UT) 
Copromotor:Prof.dr. L. Feng, Tsinghua University (China).  
Promotie: 25 September 2009  
 
2009-29 
Stanislav Pokraev (UT) 
Model-Driven Semantic Integration of Service-Oriented Applications 
Promotor: Prof. dr. ir. R. J. Wieringa (UT) 
Co-promotor: Prof. dr. M. Reichert (University of Ulm)  
Assistent promotor: Dr. ir. M. W. A. Steen (Novay) Promotie: 22 Oktober 2009  
 
2009-30 
Marcin Zukowski (CWI) 
Balancing vectorized query execution with bandwidth-optimized storage  
Promotor: Prof. dr. M.L. Kersten (CWI/UvA)  
Copromotor: Dr. P.A. Boncz (CWI)  
Promotie: 11 September 2009  
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2009-31 
Sofiya Katrenko (UVA) 
A Closer Look at Learning Relations from Text 
Promotor: Prof. dr. P.W. Adriaans (UVA)  
Promotie: 10 September 2009  
 
2009-32 
Rik Farenhorst (VU) and Remco de Boer (VU)  
Architectural Knowledge Management: Supporting Architects and Auditors  
Promotor: Prof. dr. J.C. van Vliet (VU)  
Copromotor: Dr. P. Lago (VU)  
Promotie: 05 October 2009  
 
2009-33 
Khiet Truong (UT) 
How Does Real Affect Affect Affect Recognition In Speech? 
Promotor:Prof. dr. F.M.G. de Jong (UT), Prof. dr. ir. D.A. van Leeuwen (RU)  
Promotie: 27 August 2009  
 
2009-34 
Inge van de Weerd (UU) 
Advancing in Software Product Management: An Incremental Method Engineering Approach  
Promotor: Prof.dr. S. Brinkkemper (UU)  
Copromotor: Dr. ir. J. Versendaal (UU) 
Promotie: 09 September 2009  
 
2009-35 
Wouter Koelewijn (UL) 
Privacy en Politiegegevens; Over geautomatiseerde normatieve informatie-uitwisseling 
Promotores: Prof. dr. H.J. van den Herik (UvT/UL), Prof. mr. A.H.J. Schmidt (UL)  
Co-promotor: dr. L. Mommers (UL)  
Promotie: 04 November 2009  
 
2009-36 
Marco Kalz (OU) 
Placement Support for Learners in Learning Networks  
Promotor: Prof.dr. E.J.R. Koper (OU)  
Copromotor: Dr. J.M. van Bruggen (OU) 
Promotie: 16 October 2009  
 
2009-37 
Hendrik Drachsler (OU) 
Navigation Support for Learners in Informal Learning Networks 
Promotores: Prof.dr. E.J.R. Koper (OU)  
Co-promotor: Dr. H.G.K. Hummel (OU)  
Promotie: 16 October 2009  
 
2009-38 
Riina Vuorikari (OU) 
Tags and self-organisation: a metadata ecology for learning resources in a multilingual context  
Promotor: Prof.dr. E.J.R. Koper (OU)  
Promotie: 13 November 2009  
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2009-39 
Christian Stahl (TUE, Humboldt-Universitaet zu Berlin)  
Service Substitution -- A Behavioral Approach Based on Petri Nets  
Promotores: Prof.dr. K. van Hee (TUE), Prof.dr. W. Reisig (Humboldt-Universitaet zu Berlin)  
Co-promotor: Prof.dr. Karsten Wolf (Universitaet Rostock)  
Promotie: 1 December 2009  
 
2009-40 
Stephan Raaijmakers (UvT) 
Multinomial Language Learning: Investigations into the Geometry of Language  
Promotores: Prof. dr. W. Daelemans (UvT), Prof.dr. A.P.J. van den Bosch (UvT)  
Promotie: 1 December 2009  
 
 
2009-41 
Igor Berezhnyy (UvT) 
Digital Analysis of Paintings  
Promotores: Prof. dr. E.O. Postma (UvT), Prof.dr. H.J. van den Herik (UvT)  
Promotie: 7 December 2009  
 
2009-42 
Toine Bogers (UvT) 
Recommender Systems for Social Bookmarking  
Promotor: Prof.dr. A.P.J. van den Bosch (UvT)  
Promotie: 8 December 2009  
 
2009-43 
Virginia Nunes Leal Franqueira (UT) 
Finding Multi-step Attacks in Computer Networks using Heuristic Search and Mobile Ambients  
Promotor: Prof. dr. R.J. Wieringa (UT)  
Co-promotor: Dr. P. van Eck (UT)  
Promotie:13 November 2009  
 
2009-44 
Roberto Santana Tapia (UT) 
Assessing Business-IT Alignment in Networked Organizations  
Promotor: Prof. dr. R.J. Wieringa (UT)  
Promotie: 4 December 2009  
 
2009-45 
Jilles Vreeken (UU) 
Making Pattern Mining Useful  
Promotor: Prof. dr.A.P.J.M. Siebes (UU)  
Promotie:15 December 2009  
 
2009-46 
Loredana Afanasiev (UvA) 
Querying XML: Benchmarks and Recursion  
Promotor: Prof.dr. M. de Rijke (UvA)  
Co-promotor: Dr. M.J. Marx (UvA)  
Promotie: 18 December 2009  
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The Saga of Finite Equational Bases over BCCSP

Taolue Chen1 and Wan Fokkink2

1 DACS & FMT, University of Twente, The Netherlands
2 Department of Theoretical Computer Science, Vrije Universiteit Amsterdam, The Netherlands

Abstract. Van Glabbeek (1990) presented the “linear time – branching time spectrum”,
a lattice of behavioral semantics over labeled transition systems ordered by inclusion. He
studied these semantics in the setting of the basic process algebra BCCSP, and tried to give
finite complete axiomatizations for them. Obtaining such axiomatizations in concurrency
theory often turns out to be difficult, which had raised a host of open questions that were
the subject of intensive research in recent years. All of these questions are settled over BCCSP
now, either positively by giving a finite complete axiomatization, or negatively by proving
that such an axiomatization does not exist. This essay reports on these results.

1 Introduction

Labeled transition systems (LTSs) constitute a fundamental model of concurrent computation which
is widely used in light of its flexibility and applicability. They model processes by explicitly de-
scribing their states and transitions from state to state, together with the actions that produce
them. Several notions of behavioral equivalences have been proposed, with the aim to identify
those states of LTSs that afford the same observations. The lack of consensus on what constitutes
an appropriate notion of observable behavior for reactive systems has led to a large number of
proposals for behavioral equivalences for concurrent processes.

Van Glabbeek [22,23] presented the linear time – branching time spectrum of behavioral pre-
orders and equivalences for finitely branching, concrete, sequential processes, which is a lattice of
known behavioral preorders and equivalences over LTSs, ordered by inclusion. The semantics in
the spectrum are based on simulation notions or on decorated traces. Fig. 1 depicts the linear time
– branching time spectrum3, where an arrow from one semantics to another means that the source
of the arrow is finer than the target.

To give further insight into the identifications made by the respective behavioral equivalences
in his spectrum, van Glabbeek [22,23] studied them in the setting of the process algebra BCCSP,
which contains only the basic process algebraic operators from CCS and CSP, but is sufficiently
powerful to express all finite synchronization trees. In particular, he associated with every behav-
ioral equivalence in his spectrum a sound equational axiomatization, i.e., a collection of equations
of behaviorally equivalent BCCSP terms. Most of the axiomatizations were also shown to be “com-
plete” in the sense that whenever two closed BCCSP terms (i.e., terms containing no occurrence of
variables) are behaviorally equivalent, then the axiomatization admits a derivation in equational
logic of the corresponding equation.

In general, axiomatizations arise from the desire of isolating the features that are common to
a collection of algebraic structures, namely, their semantics models. One requires that a set of
axioms is sound (i.e., if two behaviors can be equated, then they are semantically related), and
one desires that it is complete (i.e., if two behaviors are semantically related, then they can be
equated). Having defined a semantic model for a process algebra in terms of LTSs, it is natural to

3Note that the completed simulation and impossible futures semantics were missing in the original
spectrum [22,23], but are included here.
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Fig. 1. The linear time – branching time spectrum

study its (in)equational theory, that is, the collection of (in)equations that are valid in the given
model. The key questions here are:

– Are there reasonably informative sound and complete axiomatizations for the chosen semantic
model?

– Does the algebra of LTSs modulo the chosen notion of behavioral semantics afford a finite
(in)equational axiomatization?

A sound and complete axiomatization of a behavioral congruence (resp. precongruence) yields a
purely syntactic characterization, independent of LTSs and of the actual details of the definition
of the chosen behavioral equivalence (resp. preorder), of the semantics of the process algebra. This
bridge between syntax and semantics plays an important role in both the theory and the practice
of process algebras. From the theoretical perspective, complete axiomatizations of behavioral pre-
orders or equivalences capture the essence of different notions of semantics for processes in terms
of a basic collection of identities, and this often allows one to compare semantics which might have
been defined in very different styles and frameworks. From the point of view of practice, these
proof systems can be used to perform system verifications in a purely syntactic way using general
purpose theorem provers or proof checkers, and form the basis of purpose-built axiomatic verifica-
tion tools like, e.g. PAM [15]. Hence a positive answer to the first basic question raised above is
therefore not just theoretically pleasing, but has potential practical applications.

In literature, different forms of completeness are often considered. For BCCSP, an axiomatiza-
tion is said to be complete if any two behaviorally equivalent BCCSP terms (not just the closed
ones) can be equated; completeness for closed terms only we shall henceforth refer to as ground-
completeness. The notion of completeness of an axiomatization also relates the proof-theoretic
notion of derivability using the rules of equational logic with the model-theoretic one of “validity
in a model”. From a proof-theoretic perspective, a useful property of a ground-complete axiom-
atization is that whenever all closed instances of an equation can be derived from it, then the
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equation itself can also be derived from it; this property is generally referred to as ω-completeness.
For theorem proving applications, it is particularly convenient if an axiomatization is ω-complete,
because it means that proofs by (structural) induction can be avoided in favor of purely equational
reasoning; see [14]. In [12] it was argued that ω-completeness is desirable for the partial evaluation
of programs. It turns out that completeness and ω-completeness are closely related properties of
an axiomatization. Indeed, in the setting of BCCSP, it is not hard to show that any complete
axiomatization is also ω-complete. Conversely any ω-complete axiomatization is, by definition,
complete.

In universal algebra, a complete axiomatization is referred to as a basis for the equational
theory of the algebra it axiomatizes. The existence of a finite basis for an equational theory is a
classic topic of study in universal algebra (see, e.g., [18]), dating back to Lyndon [16]. Murskĭi [21]
proved that “almost all” finite algebras (namely all quasi-primal ones) are finitely based, while
in [20] he presented an example of a three-element algebra that has no finite basis. Henkin [13]
showed that the algebra of naturals with addition and multiplication is finitely based, while Gurevic̆
[11] showed that after adding exponentiation the algebra is no longer finitely based. McKenzie [17]
settled Tarski’s Finite Basis Problem in the negative, by showing that the general question whether
a finite algebra is finitely based is undecidable.

Process algebra, as a branch of universal algebra and equational logic, naturally features the
study of results pertaining to the existence or non-existence of finite bases for algebras modulo given
semantics. Many of the existing axiomatizations of behavioral semantics over expressive process
algebras studied in concurrency theory are powerful enough to prove all of the valid equalities
between closed terms; they are ground-complete, but not ω-complete. In fact, obtaining ω-complete
axiomatizations in concurrency theory often turns out to be a difficult question, even in the setting
of simple languages like BCCSP. This has raised a host of open questions that have been the subject
of intensive investigation by process algebraists in recent years. Fortunately, theses questions are
finally settled for all the semantics in the linear time – branching time spectrum in the setting of
BCCSP, either positively by giving a finite sound and ground-complete axiomatization that is ω-
complete, or negatively by proving that such a finite basis for the equational theory does not exist.
In this essay, we report on these positive and negative results. We hope that this will contribute
to their dissemination in our research community and stimulate further investigations.

This essay is organized as follows: Section 2 gives some preliminaries, in particular, the linear
time – branching time spectrum and process algebra BCCSP; Section 3 reports on results on
axiomatizations of behavioral semantics in the specturm over the language BCCSP; Section 4
gives a summary.

2 Preliminaries

2.1 The linear time – branching time spectrum

A labeled transition system consists of a set of states S, with typical element s, and a transition
relation → ⊆ S × L × S, where L is a set of labels ranged over by a. We write s

a−−→ s′ if the
triple (s, a, s′) is an element of →. The set I(s) consists of those labels a for which there exists s′

such that s
a−−→ s′. Let a1 · · ·ak be a sequence of labels; we write s

a1···ak−−−−−→ s′ if there are states
s0, . . . , sk such that s = s0

a1−−→ · · ·
ak−−→ sk = s′.

First we define six semantics based on decorated versions of execution traces.

Definition 1 (Decorated Traces). Assume a labeled transition system.

– A sequence a1 · · · ak, with k ≥ 0, is a trace of a state s if there is a state s′ such that s
a1···ak−−−−−→

s′. It is a completed trace of s if moreover I(s′) = ∅.
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– A pair (a1 · · · ak, B), with k ≥ 0 and B ⊆ A, is a ready pair of a state s0 if there is a sequence
of transitions s0

a1−−→ · · ·
ak−−→ sk with I(sk) = B. It is a failure pair of s0 if there is such a

sequence with I(sk) ∩ B = ∅.
– A sequence B0a1B1 . . . akBk, with k ≥ 0 and B0, . . . , Bk ⊆ A, is a ready trace of a state s0 if

there is a sequence of transitions s0
a1−−→ · · ·

ak−−→ sk with I(si) = Bi for i = 0, . . . , k. It is a
failure trace of s0 if there is such a sequence with I(si) ∩ Bi = ∅ for i = 0, . . . , k.

We write s -2 s′ with 2 ∈ {T, CT, R, F, RT, FT} if the traces, completed traces, ready pairs, failure
pairs, ready traces, or failure traces, respectively, of s are included in those of s′.

Next we define five semantics based on simulation.

Definition 2 (Simulations). Assume an A-labeled transition system.

– A binary relation R on states is a simulation if s0 R s1 and s0
a−−→ s′0 imply s1

a−−→ s′1 for
some state s′1 with s′0 R s′1.

– A simulation R is a completed simulation if s0 R s1 and I(s0) = ∅ imply I(s1) = ∅.
– A simulation R is a ready simulation if s0 R s1 and a 6∈ I(s0) imply a 6∈ I(s1).
– A simulation R is a 2-nested simulation if R−1 is included in a simulation.
– A bisimulation is a symmetric simulation.

We write s -2 s′ with 2 ∈ {S, CS, RS, 2N} if there exists a simulation, completed simulation,
ready simulation or 2-nested simulation R, respectively, with s R s′. We write s↔ s′ if there exists
a bisimulation R with s R s′.

Finally, we define three semantics based on (im)possible futures and on possible worlds.

Definition 3 ((Im)Possible futures/worlds). Assume an A-labeled transition system.

– A pair (a1 · · ·ak, X), with n ≥ 0 and X ⊆ A∗ is a possible future of a state s0 if there is a
sequence of transitions s0

a1−−→ · · ·
ak−−→ sk where X is the set of traces of sk.

– A pair (a1 · · ·ak, X), with k ≥ 0 and X ⊆ A∗, is an impossible future of a state s0 if there is
a sequence of transitions s0

a1−−→ · · ·
ak−−→ sk for some state sk with T (sk) ∩ X = ∅.

– A state s is deterministic if for each a ∈ I(s) there is exactly one state s0 such that s
a−−→ s0,

and moreover s0 is deterministic. A state s is a possible world of a state s0 if s is deterministic
and sRs0 for some ready simulation R.

We write s -2 s′ with 2 ∈ {PF, IF, PW} if the possible futures, impossible futures or the
possible worlds, respectively, of s are included in those of s′.

In general, we write s ≃2 s′ if both s -2 s′ and s′ -2 s for 2 ∈ {T, CT, R, F, RT, FT, S, CS, RS,

2N, PF, IF, PW}.

2.2 BCCSP

BCCSP is a basic process algebra for expressing finite process behavior. Its signature consists of the
constant 0, the binary operator + , and unary prefix operators a , where a ranges over a nonempty
set A of actions, called the alphabet, with typical elements a, b, c. Intuitively, closed BCCSP terms,
denoted p, q, r, represent finite process behaviors, where 0 does not exhibit any behavior, p + q

offers a choice between the behaviors of p and q, and ap executes action a to transform into p.
This intuition is captured by the transition rules below, in which a ranges over A. They give rise
to A-labeled transitions between BCCSP terms.

ax
a−−→ x

x
a−−→ x′

x + y
a−−→ x′

y
a−−→ y′

x + y
a−−→ y′
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We also assume a countably infinite set V of variables; x, y, z denote elements of V , and X, Y, Z

denote finite subsets of V . Open BCCSP terms, which may contain variables from V , are denoted
t, u, v, w. A term t is called a prefix if t = at′ for some a ∈ A and for some term t′.

The preorders - in the linear time – branching time spectrum are all precongruences with
respect to BCCSP, meaning that p1 - q1 and p2 - q2 imply p1 + p2 - q1 + q2 and ap1 - aq1 for
a ∈ A. Likewise, the equivalences in the spectrum are all congruences with respect to BCCSP.

A (closed) substitution, denoted ρ, σ, τ , maps variables in V to (closed) BCCSP terms. For
open BCCSP terms t and u, and a preorder - (or equivalence ≃) on closed BCCSP terms, we
define t - u (or t ≃ u) if ρ(t) - ρ(u) (resp. ρ(t) ≃ ρ(u)) for all closed substitutions ρ.

An equational axiomatization is a collection of equations t ≈ u, and an inequational axiomati-
zation is a collection of inequations t 4 u. The (in)equations in an axiomatization E are referred to
as axioms. If E is an equational axiomatization, we write E ⊢ t ≈ u if the equation t ≈ u is deriv-
able from the axioms in E using the rules of equational logic (reflexivity, symmetry, transitivity,
substitution, and closure under BCCSP contexts):

t ≈ t

t ≈ u

u ≈ t

t ≈ u u ≈ v

t ≈ v

t ≈ u

ρ(t) ≈ ρ(u)

t ≈ u

at ≈ au

t1 ≈ u1 t2 ≈ u2

t1 + t2 ≈ u1 + u2

For the derivation of an inequation t 4 u from an inequational axiomatization E of inequations,
denoted E ⊢ t 4 u, the second rule, for symmetry, is omitted.

An axiomatization E is sound modulo - (or ≃) if for any open BCCSP terms t, u, from
E ⊢ t 4 u (or E ⊢ t ≈ u) it follows that ρ(t) - ρ(u) (or ρ(t) ≃ ρ(u)) for all closed substitutions
ρ. E is ground-complete modulo - (or ≃) if p - q (or p ≃ q) implies E ⊢ p 4 q (or E ⊢ p ≈ q),
for all closed BCCSP terms p and q; it is complete modulo - (or ≃) IF p - q (or p ≃ q) implies
E ⊢ p 4 q (or E ⊢ p ≈ q) for all BCCSP terms p and q. Finally, E is ω-complete if for any open
BCCSP terms t and u with E ⊢ ρ(t) 4 ρ(u) (or E ⊢ ρ(t) ≈ ρ(u)) for all closed substitutions ρ, we
have E ⊢ t 4 u (or E ⊢ t ≈ u). A preorder - or an equivalence ≃ is said to be finitely based if
there exists a finite axiomatization E that is sound and complete modulo - or ≃.

Let {t1, . . . , tn} be a finite set of terms; we use summation
∑

{t1, . . . , tn} to denote t1 + · · ·+ tn,
adopting the convention that the summation of the empty set denotes 0. Furthermore, we write ant

to denote the term obtained from t by prefixing it n times with a, i.e., a0t = t and an+1t = a(ant).
When writing terms, we adopt as binding convention that + and summation bind weaker than
a . With abuse of notation, we often let a finite set X denote the term

∑

x∈X x.

3 Positive and Negative Results for BCCSP

In this section we will survey positive and negative results on the existence of a finite basis for
the equational (resp. inequational) theories of BCCSP modulo the equivalences (resp. preorders)
in the spectrum above. The axiomatizations that we will present for the different semantics in
the spectrum were mostly taken from [23]. Note that in case of an infinite alphabet, occurrences
of action names in axioms are interpreted as variables, as otherwise most of the axiomatizations
mentioned in this introduction would be infinite.

As the readers might see, except for bisimulation, the semantics considered in this essay have
a natural formulation as a preorder relation, while the corresponding equivalence is defined as
the kernel of the preorder. Recently, Aceto, Fokkink and Ingolfsdottir [1] gave an algorithm that,
given a sound and ground-complete axiomatization for BCCSP modulo a preorder no finer than
ready simulation, produces a sound and ground-complete axiomatization for BCCSP modulo the
corresponding equivalence. Moreover, if the original axiomatization for the preorder is ω-complete,
then so is the resulting axiomatization for the equivalence. So for the positive result regarding a
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semantics, the stronger result is obtained by considering the preorder. (The result for the equiv-
alence can be read as a corollary.) On the other hand, the negative results become more general
if they are proved for the equivalence relations. We note that, as we will see soon, the condition
“no finer than ready simulation” of the algorithm is essential. This also suggests that, for 2-nested
simulation, possible futures and impossible futures semantics which fail this condition, the results
for preorders and equivalences must be stated separately.

3.1 Bisimulation

The core axioms in the following table are sound and ground-complete for BCCSP modulo bisim-
ulation. Moller [19] proved using normal forms that this axiomatization is ω-complete; Groote
provided an alternative proof of this result in [10] using his inverted substitutions technique.

A1 x + y ≈ y + x

A2 (x + y) + z ≈ x + (y + z)
A3 x + x ≈ x

A6 x + 0 ≈ x

Table 1. The axioms for bisimulation.

3.2 2-Nested Simulation

Chen and Fokkink [5] proved that BCCSP modulo any semantics no coarser than impossible futures
equivalence and no finer than 2-nested simulation equivalence does not possess a finite sound and
ground-complete axiomatization. (Note that possible futures equivalence is within this semantics
range.) This improves a result due to Aceto, Fokkink, van Glabbeek and Ingolfsdottir [2] which
covers 2-nested simulation and possible future equivalences only. The cornerstone for this negative
result is the following infinite family of equations: for m ≥ 0,

aa2m0 + a(am0 + a2m0) ≈ a(am0 + a2m0) .

These equations are sound modulo 2-nested simulation equivalence. However, any finite axiom-
atization for BCCSP which is sound modulo impossible futures equivalence cannot derive all of
them.

For 2-nested simulation preorder, Aceto, Fokkink, van Glabbeek and Ingolfsdottir [2] proved
that it lacks a finite, sound, ground-complete axiomatization as well. The infinite family of inequa-
tions that they used to prove this negative result is, for m ≥ 0,

a2m 4 a2m + am .

These inequations are sound modulo 2-nested simulation preorder. However, any finite axiomati-
zation for BCCSP which is sound modulo 2-nested simulation preorder cannot derive all of them.

3.3 Possible Futures

Aceto, Fokkink, van Glabbeek and Ingolfsdottir [2] proved that BCCSP modulo possible futures
preorder does not possess a finite, sound, ground-complete axiomatization. The infinite family of
inequations that they used to prove this negative result is, for m ≥ 0,

a(am + a2m) + aa3m 4 a(am + a3m) + aa2m .
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These equations are sound modulo possible futures preorder. However, any finite axiomatization
for BCCSP which is sound modulo possible futures preorder cannot derive all of them.

As for possible futures equivalence, the aforementioned negative result (cf. the previous section)
implies that BCCSP modulo possible futures equivalence does not possess a finite, sound, ground-
complete axiomatization.

3.4 Impossible Futures

Chen and Fokkink [5] provided a sound and ground-complete axiomatization for BCCSP modulo
impossible futures preorder. This is obtained by extending the four core axioms with two extra
axioms:

a(x + y) 4 ax + ay ,

a(x + y) + ax + a(y + z) ≈ ax + a(y + z) .

This result is quite surprising since the aforementioned negative result (cf. the section on 2-nested
simulation) implies that BCCSP modulo impossible futures equivalence does not have a finite,
sound, ground-complete axiomatization.

When A is infinite, Groote’s technique of inverted substitutions can be applied to show that
the aforementioned ground-complete axiomatization is ω-complete. When A is finite, Chen and
Fokkink [5] proved that BCCSP modulo impossible futures preorder does not possess a finite
sound and ω-complete axiomatization. The infinite family of inequations that they used to prove
this negative result is defined in the following way: in case of |A| = 1, for m ≥ 0,

amx 4 amx + x ,

while in case of 2 ≤ |A| < ∞,

a(amx) + a(amx + x) +
∑

b∈A

a(amx + amb0) 4 a(amx + x) +
∑

b∈A

a(amx + amb0) .

To the best of our knowledge, impossible futures semantics is the first (and up to now, the only)
example that affords a finite, ground-complete axiomatization for BCCSP modulo the preorder,
while missing a finite, ground-complete axiomatization for BCCSP modulo the equivalence. This
fact suggests that, for instance, if one wants to show p ≃IF q in general, one has to resort to
deriving p -IF q and q -IF p separately, instead of proving it directly.

It is worth pointing out that this result does not contradict the algorithm [1] mentioned at
the beginning of this section, since that algorithm only applies to semantics that are at least as
coarse as ready simulation semantics. Since impossible futures semantics is incomparable to ready
simulation semantics, it falls outside the scope of [1]. Interestingly, this result yields that no such
algorithm exists for certain semantics incomparable with (or finer than) ready simulation.

3.5 Ready Simulation

Van Glabbeek gave a finite axiomatization that is sound and ground-complete for BCCSP modulo
ready simulation preorder. It consists of four core axioms and the following axiom:

ax 4 ax + ay ,

where a ranges over A. For ready simulation equivalence, he only presented a conditional axiom:
I(x) = I(y) ⇒ a(x + y) ≈ a(x + y) + ay. Blom, Fokkink and Nain [3] showed that a sound and
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ground-complete finite equational axiomatization for BCCSP modulo ready simulation equivalence
does exist. It can be obtained by extending the four core axioms with

a(bx + by + z) ≈ a(bx + by + z) + a(bx + z) ,

where a, b range over A.
When A is infinite, Groote’s technique of inverted substitutions can be applied to show that

these axiomatizations are ω-complete. When A is finite, Chen, Fokkink, and Nain [7] proved that
BCCSP modulo ready simulation equivalence does not possess a finite sound and ω-complete
axiomatization. (Hence neither does ready simulation preorder.) The infinite family of equations
that they used to prove this negative result is, for n > 0,

anx + an0 +
∑

b∈A

an(x + b0) ≈ an0 +
∑

b∈A

an(x + b0) .

These equations are sound modulo ready simulation equivalence. However, they cannot be derived
from any finite axiomatization for BCCSP sound which is sound modulo ready simulation equiva-
lence. When |A| = 1, ready simulation equivalence (resp. preorder) coincides with completed trace
equivalence (resp. preorder), and we will see that in this case a finite basis does exist.

3.6 Completed Simulation

Van Glabbeek gave a finite axiomatization that is sound and ground-complete for BCCSP modulo
completed simulation preorder. It consists of four core axioms together with

ax 4 ax + y ,

where a range over A. It follows that

a(bx + y + z) ≈ a(bx + y + z) + a(bx + z)

suffices to obtain a finite, sound and ground-complete axiomatization for the completed simulation
equivalence.

When |A| > 1, Chen, Fokkink and Nain [7] proved that BCCSP modulo completed simulation
equivalence does not possess a finite sound and ω-complete axiomatization. (Hence neither does
ready simulation preorder.) The infinite family of equations that they used to prove this negative
result is, for n ≥ 0,

anx + an0 + an(x + y) ≈ an0 + an(x + y) .

These equations are sound modulo completed simulation equivalence. However, they cannot be
derived from any finite axiomatization for BCCSP which is sound modulo completed simulation
equivalence. When |A| = 1, completed simulation equivalence (resp. preorder) coincides with com-
pleted trace equivalence (resp. preorder), and we will see that in this case a finite basis does exist.

It is worth mentioning that completed simulation is the only semantics in the linear time
– branching time spectrum that in case of an infinite alphabet has a finite sound and ground-
complete axiomatization for BCCSP, but no finite ω-complete axiomatization.

3.7 Simulation

A sound and ground-complete axiomatization for BCCSP modulo simulation preorder is obtained
by extending the four core axioms with

x 4 x + y .
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It follows that the following axiom

a(x + y) ≈ a(x + y) + ay ,

suffices to obtain a sound and ground-complete axiomatization for BCCSP modulo simulation
equivalence. When A is infinite, Groote’s technique of inverted substitutions can be applied to
show that these axiomatizations are ω-complete. When 1 < |A| < ∞, Chen and Fokkink [4]
proved that BCCSP modulo simulation equivalence does not possess a finite sound and ω-complete
axiomatization. (Hence neither does simulation preorder.) The infinite family of equations that they
used to prove this negative result is, for n ≥ 0,

a(x + Ψn) +
∑

θ∈An

a(x + Ψθ
n) + aΦn ≈

∑

θ∈An

a(x + Ψθ
n) + aΦn .

Here the Φn are defined inductively as follows:

{

Φ0 = 0
Φn+1 =

∑

b∈A bΦn

Moreover, the Ψn and Ψθ
n are defined by:

Ψn =
∑

b1···bn∈An b1 · · · bn0

Ψθ
n =

∑

b1···bn∈An\{θ} b1 · · · bn0 for θ ∈ An .

These equations are sound modulo simulation equivalence. However, any finite axiomatization for
BCCSP which is sound modulo simulation equivalence cannot derive all of them. When |A| = 1,
simulation equivalence (resp. preorder) coincides with trace equivalence (resp. preorder), and we
will see that in this case a finite basis does exist.

3.8 Possible Worlds

A sound and ground-complete axiomatization for BCCSP modulo possible worlds preorder is ob-
tained by extending the four core axioms with

ax 4 ax + ay ,

a(bx + by + z) 4 a(bx + z) + a(by + z) .

It follows that the following axiom

a(bx + by + z) ≈ a(bx + z) + a(by + z)

suffices to obtain a sound, ground-complete axiomatization for BCCSP modulo possible worlds
equivalence.

When A is infinite, Groote’s technique of inverted substitutions can be applied to show that
these axiomatizations are ω-complete. Fokkink and Nain [8] showed that when 1 < |A| < ∞,
BCCSP modulo any semantics no coarser than ready pair equivalence and no finer than possible
worlds equivalence does not possess a finite basis. (Note that ready traces equivalence is within
this semantic range.) Their proof of this negative result, which uses cover equations and applies
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the compactness theorem to the equational theory for terms of depth 1, is based on the following
infinite family of equations:

a(

|A|−1
∑

i=1

xi) +

|A|−1
∑

j=1

a(

j−1
∑

i=1

xi +
n

∑

i=j+1

xi) +
n

∑

j=|A|

a(

|A|−1
∑

i=1

xi + xj + yj) ≈

a(

|A|−1
∑

i=1

xi) +

|A|−1
∑

j=1

a(

j−1
∑

i=1

xi +

n
∑

i=j+1

xi) +

n
∑

j=|A|

a(

|A|−1
∑

i=1

xi + xj + yj) + a(

n
∑

i=1

xi).

These equations are sound modulo possible worlds equivalence for n ≥ |A|. However, any finite
axiomatization that is sound for BCCSP modulo ready pairs equivalence cannot derive them all.
When |A| = 1, possible worlds equivalence (resp. preorder) coincides with completed trace equiv-
alence (resp. preorder), and we will see that in this case a finite basis does exist.

3.9 Ready Traces

Van Glabbeek presented a conditional axiom for ready trace equivalence: I(x) = I(y) ⇒ ax +
ay ≈ a(x + y). Blom, Fokkink and Nain [3] showed that when A is finite, a sound and ground-
complete finite equational axiomatization for BCCSP modulo ready traces exists. For the ready
traces preorder, it can be obtained by extending the four core axioms with

ax 4 ax + ay ,

a(

|A|
∑

i=1

(bixi + biyi) + z) 4 a(

|A|
∑

i=1

bixi + z) + a(

|A|
∑

i=1

biyi + z) .

It follows that the following axiom

a(

|A|
∑

i=1

(bixi + biyi) + z) ≈ a(

|A|
∑

i=1

bixi + z) + a(

|A|
∑

i=1

biyi + z)

suffices to obtain a finite, sound and ground-complete axiomatization for BCCSP modulo ready
traces equivalence.

When A is infinite, Blom, Fokkink and Nain showed using the compactness theorem that a finite
sound and ground-complete axiomatization does not exist. Their proof is based on the following
equations, for n > 0:

a(

n
∑

i=1

(bic0 + bid0)) ≈ a(

n
∑

i=1

bic0) + a(

n
∑

i=1

bid0) .

When 1 < |A| < ∞, the aforementioned negative result from [8] (cf. the section on possible worlds)
implies that BCCSP modulo ready traces does not possess a finite basis. When |A| = 1, ready
trace equivalence (resp. preorder) coincides with completed trace equivalence (resp. preorder), and
we will see that in this case a finite ω-complete axiomatization does exist.

3.10 Failure Traces

Van Glabbeek presented a conditional axiom for failure traces (the same one as for ready traces).
Blom, Fokkink and Nain [3] showed using normal forms that a sound and ground-complete finite
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equational axiomatization for BCCSP modulo failure traces equivalence exists. For failure traces
preorder, it is obtained by extending the four core axioms with

ax 4 ax + ay ,

a(x + y) 4 ax + ay .

It follows that the following axioms

a(bx + by + z) ≈ a(bx + by + z) + a(by + z) ,

ax + ay ≈ ax + ay + a(x + y) .

suffice to obtain a finite, sound and ground-complete axiomatization for BCCSP modulo failure
traces equivalence.

When A is infinite, Groote’s technique of inverted substitutions can be applied to show that
these axiomatizations are ω-complete. When 1 < |A| < ∞, Chen, Fokkink and Luttik [6] showed
that BCCSP modulo failure traces equivalence does not possess a finite sound and ω-complete
axiomatization. (Hence neither does failure traces preorder.) The infinite family of equations that
they used to prove this negative result is, for n ≥ 0,

an+1x + a(anx + x) + a
∑

b∈A\{a}

an(b0 + x) ≈ a(anx + x) + a
∑

b∈A\{a}

an(b0 + x) .

These equations are sound modulo failure traces equivalence. However, any finite axiomatization
for BCCSP which is sound modulo failure traces equivalence cannot derive all of them. When
|A| = 1, failure trace equivalence (resp. preorder) coincides with completed trace equivalence
(resp. preorder), and we will see that in this case a finite basis does exist.

3.11 Ready Pairs

A sound and ground-complete axiomatization for BCCSP modulo ready pairs preorder is obtained
by extending the four core axioms with

ax 4 ax + ay ,

a(bx + by + z) 4 a(bx + z) + a(by + w) .

It follows that the following axiom

a(bx + z) + a(by + w) ≈ a(bx + by + z) + a(by + w)

suffices to obtain a finite sound and ground-complete axiomatization for BCCSP modulo ready
pairs equivalence.

When A is infinite, Groote’s technique of inverted substitutions can be applied to show that
these axiomatizations are ω-complete. When 1 < |A| < ∞, the aforementioned negative result
from [8] (cf. the section on possible worlds) implies that BCCSP modulo ready pairs equivalence
does not possess a finite basis. (Hence neither does ready pairs preorder.) When |A| = 1, ready
pairs equivalence (resp. preorder) coincides with completed trace equivalence (resp. preorder), and
we will see that in this case a finite basis does exist.
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3.12 Failure Pairs

A sound and ground-complete axiomatization for BCCSP modulo failure pairs preorder is obtained
by extending the four core axioms with

a(x + y) 4 ax + a(y + z) .

It follows that the following two axioms

a(bx + by + z) ≈ a(bx + by + z) + a(bx + z) ,

ax + a(y + z) ≈ ax + a(y + z) + a(x + y)

suffice to obtain a finite, sound and ground-complete axiomatization for BCCSP modulo failure
pairs equivalence. Fokkink and Nain [9] proved using cover equations that when A is infinite, these
axiomatizations are ω-complete. They also proved that when A is finite, one extra axiom is needed
to obtain an ω-complete axiomatization. For failure pairs preorder, it is formulated as

|A|
∑

i=1

aixi 4

|A|
∑

i=1

aixi + y ,

while for failure pairs equivalence, it is formulated as

a(

|A|
∑

i=1

bixi + y + z) ≈ a(

|A|
∑

i=1

bixi + y + z) + a(

|A|
∑

i=1

bixi + y) .

3.13 Completed Traces

A sound and ground-complete axiomatization for BCCSP modulo completed traces preorder is
obtained by extending the four core axioms with

ax 4 ax + y ,

a(bw + cx + y + z) 4 a(bw + y) + a(cx + z) .

It follows that the following axiom

a(bw + y) + a(cx + z) ≈ a(bw + cx + y + z)

suffices to obtain a sound and ground-complete axiomatization for BCCSP modulo completed
traces equivalence.

Groote [10] proved using normal forms that in order to obtain an ω-complete axiomatization,
one extra axiom is needed. For completed traces preorder, it is formulated as

a(x + y) 4 ax + a(y + z) ,

while for complete traces equivalence, it is formulated as

ax + a(y + z) ≈ ax + a(y + z) + a(x + y) .
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3.14 Traces

A sound and ground-complete axiomatization for BCCSP modulo traces preorder is obtained by
extending the four core axioms with

x 4 x + y ,

a(x + y) 4 ax + ay .

It follows that the following axiom

ax + ay ≈ a(x + y)

suffices to obtain a sound and ground-complete axiomatization for BCCSP modulo traces equiva-
lence.

Groote [10] proved using normal forms that these axiomatizations are ω-complete when |A| > 1.
When |A| = 1, it is not hard to see that one extra axiom suffices to make the axiomatization ω-
complete. For traces preorder, it is formulated as

x 4 ax ,

while for traces equivalence, it is formulated as

ax + x ≈ ax .

4 Conclusion

The questions whether a semantics in the linear time – branching time spectrum is finitely based
over BCCSP have been settled completely. We summarize the results here:

– For most of the semantics in the linear time – branching time spectrum, corresponding pre-
orders and equivalences share the same axiomatzability properties. The only exception is the
impossible futures semantics. Tab. 2 presents an overview regarding this semantics, where +
means that the axiomatization exists, – means that there is no such axiomatization.

ground-comp. ω-comp.
1 ≤ |A| ≤ ∞ |A| = ∞ 1 ≤ |A| < ∞

preorder + + –

equivalence – – –

Table 2. Axiomatizability of impossible futures for BCCSP

– BCCSP has a finite sound and ground-complete axiomatization for most of the semantics in
the linear time – branching time spectrum. Only for 2-nested simulation and possible futures,
and for ready traces in case of an infinite alphabet, such an axiomatization does not exist.
Tab. 3 presents an overview, where we distinguish between an infinite alphabet and a finite
alphabet.

– Regarding ω-completeness, matters are more mixed, especially when 1 < |A| < ∞. Tab. 4
presents an overview, where we distinguish among an infinite alphabet, a finite alphabet with
more than one element, and a singleton alphabet.
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|A| < ∞ |A| = ∞

bisimulation + +

2-nested simulation – –

possible futures – –

ready simulation + +

completed simulation + +

simulation + +

possible worlds + +

ready traces + –

failure traces + +

readies + +

failures + +

completed traces + +

traces + +

Table 3. The existence of ground-complete axiomatizations for BCCSP

|A| = 1 1 < |A| < ∞ |A| = ∞

bisimulation + + +

2-nested simulation – – –

possible futures – – –

ready simulation + – +

completed simulation + – –

simulation + – +

possible worlds + – +

ready traces + – –

failure traces + – +

readies + – +

failures + + +

completed traces + + +

traces + + +

Table 4. The existence of ω-complete axiomatizations for BCCSP
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Mealy Synthesis of Arithmetic Bitstream Functions

Helle Hvid Hansen
Formal Methods Group, Technische Universiteit Eindhoven, and

Centrum Wiskunde & Informatica, Amsterdam

A (binary) Mealy machine is a deterministic automaton which in each step
reads an input bit, produces an output bit and moves to a next state. The induced
mapping of input streams to output streams is a causal bitstream function, which
we call the bitstream function realised by the Mealy machine. In this note, we
describe a synthesis method which given an algebraic specification of a bitstream
function f , constructs a minimal Mealy machine which realises f . In the design of
digital hardware, Mealy machines specify the behaviour of sequential circuits, and
there exist algorithms which construct from a (finite) Mealy machine, a sequential
circuit which exhibits the specified behaviour. Combining these algorithms with
our synthesis algorithm we thus obtain a complete construction from algebraic
specification to sequential circuit.

The inputs to our synthesis algorithm are called function expressions and they
define bitstream functions in the algebra of 2-adic numbers. Here we use that the
formal power series representation of a 2-adic integer can be seen as the bitstream
of its coefficients. We describe the 2-adic algebra below, but for now such a function
expression can be thought of as a specification of a function on the rational numbers.
The interesting property of 2-adic arithmetic is that it allows us to calculate with
rational numbers in an easy manner similar to how one computes with integers.

The synthesis algorithm described here can be seen as an analogue of Brzo-
zowski’s construction in [3] of a finite deterministic automaton from a regular ex-
pression. In particular, we show that the set of function expressions can be given
the structure of a Mealy machine by giving an inductive definition of derivative and
output of function expressions. This Mealy machine of expressions is defined in
such a way that the algebraic semantics coincides with the behavioural semantics
of Mealy machines. Hence, given a function expression E which specifies a function
f , the submachine generated by E realises f . In general, this submachine is not
minimal, but we can ensure minimality by reducing expressions to normal form. In
addition, the language of 2-adic arithmetic allows the specification of functions that
are not realised by any finite Mealy machine. But we identify a subclass of so-called
rational function expressions for which a finite realisation exists. Hence given a ra-
tional function expression E, we can effectively construct a minimal Mealy machine
which realises the bitstream function specified by E. This is our main result.

The theory underlying the synthesis method is essentially coalgebraic (cf. [10]),
but we have deliberately chosen for a presentation which does not require any
familiarity with coalgebra. The fundamental ideas behind the synthesis method are
due to Jan Rutten (cf. [13]). These ideas were developed into a proper algorithm
in [7] and implemented by the author and David Costa (cf. [6]). Further results
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on complexity and size of realisations were included in the author’s PhD thesis [5,
Ch. 3]. This note contains a short, but improved presentation of the basic results
in the abovementioned work. In particular, the presentation of the Mealy machine
of expressions, the algebraic semantics of function expressions, and the proof that
algebraic semantics coincides with behavioural semantics for function expressions
are new with respect to [5, 7, 13].

The rest of this paper is structured as follows. In Section 1 we give the ba-
sic definitions regarding Mealy machines, and in Section 2 we describe the 2-adic
algebra of bitstreams and define the function expressions which serve as our spec-
ification language. In Section 3 we show how function expressions can be turned
into a Mealy machine, and Section 4 describes the synthesis method for rational
functions. Finally, we discuss related and future work in Section 5.

1 Mealy machines

We denote by 2 = {0, 1} the set of bits, and by 2ω = {σ : N → 2} the set of
bitstreams. A (binary) Mealy machine 〈S,m〉 consists of a (possibly infinite) set S
of states, and a function m : S → (2 × S)2, called the Mealy structure. For every
state s ∈ S and every input bit a ∈ 2, m returns a pair m(s)(a) = 〈b, t〉 where b ∈ 2
is called the output and t ∈ S is the next state. We will write

s
a|b //t iff m(s)(a) = 〈b, t〉.

A Mealy morphism from 〈S,m〉 to 〈S′,m′〉 is a function h : S → S′ that preserves
transitions: if m(s)(a) = 〈b, t〉 then m′(h(s))(a) = 〈b, h(t)〉; in other words,

s
a|b // t ⇒ h(s)

a|b // h(t)

We define the (input-output) behaviour of a state s0 in 〈S,m〉 as the bitstream
function beh(s0) : 2ω → 2ω which maps a bitstream (a0, a1, a2, . . . ) to (b0, b1, b2, . . . )
given by the unique sequence of transitions

s0
a0|b0 // s1

a1|b1 // · · · ak|bk // sk+1
ak+1|bk+1// · · ·

We say that a state s in 〈S,m〉 realises a bitstream function f if beh(s) = f .

Example 1.1 The figure below shows an example of a Mealy machine which start-
ing in state s0 counts the number of 1’s in the input modulo 2. Formally, on in-
put stream α ∈ 2ω, the k-th element of the output stream is (beh(s0)(α))(k) =∑k

i=0 α(i) mod 2.

S : // s0

1|1

77

0|0
��

s1

1|0
''

0|1

++ s2

1|1

gg

0|0

ss

For arbitrary α ∈ 2ω and k ∈ N, (beh(s0)(α))(k) is clearly determined by
α(0), . . . , α(k). In other words, beh(s0) is a causal bitstream function.
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A bitstream function f : 2ω → 2ω is causal, if for all α, β ∈ 2ω and all k ∈ N: if
α(i) = β(i) for all i ≤ k, then (f(α))(k) = (f(β))(k). It is straightforward to prove
that for any Mealy machine 〈S,m〉 and any s ∈ S, beh(s) : 2ω → 2ω is causal. Let
Γ denote the set of all causal bitstream functions.

We now show that Γ carries a Mealy structure. We need the following notation.
The head and tail maps on bitstreams are denoted by hd : 2ω → 2 and tl : 2ω →
2ω, respectively, that is, hd(α) = α(0) and tl(α) = (α(1), α(2), α(3), . . .). For
α ∈ 2ω, a bit a ∈ 2 and a bitstream function f , we denote by a :α the bitstream
(a, α(0), α(1), α(2), . . .), and we write f(a :−) for the bitstream function that maps
α to f(a :α). Now let f ∈ Γ and a ∈ 2. We define

f [a] := hd ◦ f(a :−) ∈ 2ω → 2
fa := tl ◦ f(a :−) ∈ 2ω → 2ω (1)

Since f is causal, it follows that also fa is causal, (hence f ∈ Γ) and that f [a] is
constant, hence f [a] can be considered an element of 2. We call f [a] the initial
output of f on input a, and fa is the stream function derivative of f on input a.
We define the Mealy structure γ : Γ → (2 × Γ)2 by γ(f)(a) = 〈f [a], fa〉, and let
Γ = 〈Γ, γ〉.

Theorem 1.2 (cf. [13]) For any Mealy machine M = 〈S,m〉, the behaviour map
behM : S → Γ is the unique Mealy morphism from M to Γ. In other words, Γ is a
final Mealy machine.

For a Mealy machineM, we say that behM assigns to its states their behavioural
semantics, andM is minimal if behM is injective. For example, the Mealy machine
in Example 1.1 is not minimal since beh(s0) = beh(s2). Given a state s in M =
〈S,m〉, the submachine 〈〈s〉〉 = 〈S′,m′〉 generated by s inM consists of the smallest
subset S′ ⊆ S such that s ∈ S′, m′ is the restriction of m to S′ and the inclusion
map S′ → S is a Mealy morphism. Another way of stating this requirement is to
say that 〈〈s〉〉 is the least subset containing s which is transition closed (cf. [10]).
We call 〈〈s〉〉 a realisation of f , if behM(s) = f , i.e., s realises f in M. From the
finality of Γ, we get:

Corollary 1.3 For all f ∈ Γ, 〈〈f〉〉 is a minimal Mealy realisation of f .

In our synthesis method, given an expression that specifies a function f ∈ Γ, we
construct a representation of 〈〈f〉〉 through a symbolic least fixed point computation.

2 The 2-adic bitstream algebra

We will specify bitstream functions in the algebra of 2-adic integers (cf. [4]). A 2-
adic integer is usually written as a (formal) power series of the form

∑∞
i=0 ai2i where

ai ∈ 2 for all i ∈ {0, 1, 2, . . .}. We identify such a power series with the bitstream
(a0, a1, a2, . . .). The 2-adic integers form an integral domain1 which extends that of
the rational numbers with odd denominator Qodd = {p/q | p, q ∈ Z, q odd }.2 The

1An integral domain is a commutative ring A with no zero-divisors, i.e., for all a, b ∈ A, if
a · b = 0 then a = 0 or b = 0.

2Rationals with even denominator require formal power series representations
P∞

i=k ai2
i where

k < 0.
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(strict) inclusion of Qodd into the 2-adic integers is obtained by taking infinitary
base 2 expansions (see e.g. [8]). For a positive integer n, this is just the binary
representation of n (least significant bit on the left) padded with a tail of zeros.
Here are a few examples:

Bin(2) = (0, 1, 0, 0, 0, . . .),
Bin(5) = (1, 0, 1, 0, 0, . . .),
Bin(−1) = (1, 1, 1, 1, . . .),
Bin(−5) = (1, 1, 0, 1, 1, 1, . . .), and
Bin(1/5) = (1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, . . .).

In general, if q is a negative integer, then Bin(q) ends in a tail of 1’s, and for all
q ∈ Qodd , Bin(q) is eventually periodic.

The 2-adic bitstream algebra A2adic = 〈2ω,+,−×, /, [0], [1]〉 is obtained from
the bitstream representation of 2-adic arithmetic. In particular, [0] = Bin(0) and
[1] = Bin(1). An attractive property of 2-adic arithmetic is that one can calcu-
late with bitstreams (including elements of Qodd ) in a manner similar to how one
calculates with the usual integers. For example, 2-adic sum is an infinitary ver-
sion of binary addition where carry bits can be propagated indefinitely. This is
how one sees that Bin(−1) + Bin(1) = (1, 1, 1, . . .) + (1, 0, 0, . . .) = [0]. The 2-adic
operations satisfy the so-called stream differential equations in Figure 1. Stream
differential equations are a general way of defining streams as the unique solution to
a set of equations. We refer to [11] for a comprehensive overview. In analogy with
traditional differential calculus, the head and tail of streams in stream diferential
equations are usually referred to as the initial value and derivative, respectively,
and denoted by α(0) and α′. Moreover, ∧ and ⊕ denote the bit operations of
Boolean and and xor (or addition modulo 2), respectively.

We briefly explain the equations in Figure 1. The equation for sum shows
that a carry term must be added in case the two initial values were both 1. The
equation for minus is obtained from the requirement that (−α) + α = [0] for
all α ∈ 2ω. By taking initial value and derivative on both sides and using the
equation for +, we find that (−α)(0)⊕ α(0) = 0, hence (−α)(0) = α(0), and that
(−α)′+α′+[α(0)] = [0], hence (−α)′ = −(α′+[α(0)]). The equation for the product
states that for all α, β ∈ 2ω, α×β can be calculated using the base 2 version of shift-
add-multiplication known from the multiplication in decimal notation. Finally, the
multiplicative inverse of α ∈ 2ω is defined only if α(0) = 1, since α(0) must be
invertible in the underlying ring. If 1/α is defined then it satisfies (1/α)× α = [1].
The equation for 1/α can be derived in a similar way as for −α.

derivative: initial value:
(α+ β)′ = (α′ + β′) + [α(0) ∧ β(0)] (α+ β)(0) = α(0)⊕ β(0)
(−α)′ = −(α′ + [α(0)]) (−α)(0) = α(0)
(α× β)′ = (α′ × β) + ([α(0)]× β′) (α× β)(0) = α(0) ∧ β(0)
(1/α)′ = −(α′ × (1/α) ) (1/α)(0) = 1 (condition: α(0) = 1)

Figure 1: The 2-adic operations

When calculating with the 2-adic operations it is convenient to also have a
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symbol for the bitstream Bin(2). We define X := Bin(2) = (0, 1, 0, 0, 0, . . .). Some
of the identities that hold in A2adic are: For all α = (a0, a1, a2, a3, . . .) ∈ 2ω,

X × α = 0:α = (0, a0, a1, a2, . . .)
[1] + (X × α) = 1:α = (1, a0, a1, a2, . . .)

α = [α(0)] + (X × α′)
α+ α = X × α

3 Mealy machine of expressions

We will specify bitstream functions in the language of A2adic over a single variable
s. Formally, the set of function expressions FExpr is generated by the following
grammar:

E, F ::= s | 0 | 1 | X | −E | E + F | E× F | 1/(1 + (X× E))

We use the symbols −,+,×, / to denote the operations on bitstreams as well as the
corresponding syntax constructors. The typing should always be clear from the con-
text. We will use standard notational conventions: we write En for the n-fold prod-
uct of E with itself, and F/(1 + (X× E)) or F

1+(X×E) instead of F× (1/(1 + (X× E))).
The algebraic semantics of function expressions is given by the expected interpreta-
tion in A2adic . The reason we only allow division by terms of the form 1 + (X× E)
is to ensure that the inverse operation is always defined when evaluating function
expressions in A2adic .

Definition 3.1 We define the algebraic 2-adic semantics [[E]] : 2ω → 2ω of a func-
tion expression E ∈ FExpr by the following inductive clauses. Let σ be a bitstream,

[[s]](σ) = σ

[[0]](σ) = [0]
[[1]](σ) = [1]
[[X]](σ) = X

[[−E]](σ) = −([[E]](σ))
[[E + F]](σ) = [[E]](σ) + [[F]](σ)
[[E× F]](σ) = [[E]](σ)× [[F]](σ)

[[1/(1 + (X× E)]](σ) = 1/(1 + (X × [[E]](σ))

We say that a function expression E specifies the bitstream function [[E]], and
two function expressions E and F are equivalent (notation: E ≡ F) if [[E]] = [[F]].

One easily shows (by structural induction on function expressions) that for
all E ∈ FExpr, [[E]] is a causal bitstream function. In other words, [[−]] is a map
from FExpr to Γ. We will now define a Mealy structure on FExpr such that the
algebraic semantics [[−]] is a Mealy morphism. In order to define a map ξ : FExpr→
(2 × FExpr)2, first recall how we defined γ(f)(a) in terms of f(a : −), hd and tl
(cf. equation (1)) for f ∈ Γ and a ∈ 2. We will “mimick” γ in the syntax.

First, we need a syntactic version of the map f(a : −) for f ∈ Γ and a ∈ 2.
More precisely, given E ∈ FExpr and a ∈ 2, we want to find a function expression
which specifies [[E]](a :−). Note that we have for all σ ∈ 2ω: [[X × s]](σ) = 0 : σ
and [[1 + (X × s)]](σ) = 1 : σ. For E ∈ FExpr and a ∈ 2, let 0 : s := X × s and
1 : s := 1 + (X × s), and define E(a : s) to be the function expression obtained by
substituting a :s for s in E. The following lemma can then be proved by induction
on E.

NVTI  Nieuwsbrief 2010  Pagina 45 van 71



initial output (syntax)
s[a] = a (−E)[a] = E[a]
0[a] = 0 (E + F)[a] = E[a]⊕ F[a]
1[a] = 1 (E× F)[a] = E[a] ∧ F[a]
X[a] = 0 (1/(1 + (X× E)))[a] = 1

stream function derivative (syntax)
sa = s (−E)a = −(Ea + ι(E[a]))
0a = 0 (E + F)a = (Ea + Fa) + ι(E[a] ∧ F[a])
1a = 0 (E× F)a = (Ea × F(a :s)) + (ι(E[a])× Fa)
Xa = 1 (1/(1 + (X× E)))a = −(E(a :s))/(1 + (X× E(a :s)))

Figure 2: Mealy structure on function expressions

Lemma 3.2 For all E ∈ FExpr, all a ∈ 2 and all σ ∈ 2ω: [[E(a :s)]](σ) = [[E]](a :σ).

Second, we need syntactic versions of the head and tail maps. That is, we want
to define a pair of maps 〈o, d〉 : FExpr → (2 × FExpr). To this end, observe that
the stream differential equations in Figure 1 can be read as an inductive definition
over function expressions. We only need to add the obvious clauses for the atomic
expressions [0], [1] and X. For example, o(X) = X(0) = 0 and d(X) = X′ = [1]. Since
s is a variable, it is not possible to give a stream differential equation for s. But
this is no problem, since we only need to define o and d on expressions of the form
E(a :s) in which s always occurs as a subterm of X× s. Recall that for all α ∈ 2ω,
tl(X×α) = α. We therefore define for all F ∈ FExpr: o(X×s) = 0 and d(X×s) = s,
and for product expressions E× F where F 6= s, we take o(E× F) = o(E) ∧ o(F) and
d(E× F) = (d(E)× F) + (ι(o(E))× d(F)), where ι : 2→ FExpr is defined by ι(0) = 0
and ι(1) = 1.

For E ∈ FExpr and a ∈ 2 we will use the suggestive notation: E[a] := o(E(a :s))
and Ea := d(E(a : s)); and we define ξ(E)(a) = 〈E[a], Ea〉. The definition of ξ is
detailed in Figure 2. We refer to 〈FExpr, ξ〉 as the Mealy machine of expressions.

Proposition 3.3 The map [[−]] : 〈FExpr, ξ〉 → 〈Γ, γ〉 is a Mealy morphism.

Proof. We must show that for all E ∈ FExpr and all a ∈ 2:

[[E]][a] = E[a] and [[Ea]] = [[E]]a.

The proof is by induction on the structure of E. We only show the case for s and
product. In the identities below, IH refers to the induction hypothesis, and L.3.2
refers to Lemma 3.2. Note also that for any b ∈ 2 and σ ∈ 2ω: [[ι(b)]](σ) = [b]. Let
a ∈ 2 and σ ∈ 2ω.

[[s]][a] = ([[s]](a :σ))(0) = (a :σ)(0) = a = s[a]
[[s]]a(σ) = ([[s]](a :σ))′ = (a :σ)′ = σ = [[sa]](σ)
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[[E× F]][a] = [[E]][a] ∧ [[F]][a] IH= E[a] ∧ F[a] = (E× F)[a].

[[E× F]]a(σ) = ([[E× F]](a :σ))′ = ([[E]](a :σ)× [[F]](a :σ))′

= (([[E]](a :σ))′ × [[F]](a :σ)) + ([([[E]](a :σ))(0)]× ([[F]](a :σ))′)
= ([[E]]a(σ)× [[F]](a :σ)) + ([[[E]][a]]× [[F]]a(σ))
IH= ([[Ea]](σ)× [[F]](a :σ)) + ([E[a]]× [[Fa]](σ))

L.3.2= [[(Ea(σ)× F(a :s)) + (ι(E[a])× Fa)]](σ)
= [[(E× F)a]](σ).

qed

Since 〈Γ, γ〉 is a final Mealy machine, the map [[−]] coincides with the unique
Mealy morphism beh : 〈FExpr, ξ〉 → 〈Γ, γ〉. In other words, for any function expres-
sion E, the algebraic semantics [[E]] equals the behavioural semantics beh(E).

4 Synthesis

A consequence of Proposition 3.3 is that the generated submachine 〈〈E〉〉 is a re-
alisation of [[E]]. Conceptually, we can construct 〈〈E〉〉 by computing the transition
closure of {E} in 〈FExpr, ξ〉. However, in general, 〈〈E〉〉 is neither finite nor minimal.
In order to obtain a minimal realisation of [[E]] we compute 〈〈E〉〉modulo equivalence.
In practice, this is achieved by reducing function expressions to normal form. We
briefly describe these normal forms. We call a function expression integral if it does
not contain the inverse operation. The polynomial normal form pnf (E) of an inte-
gral expression E is an analogue of the distributed normal form of polynomials (in
the variable s). For example, (1 + X)× (1 + s) + 1 ≡ 1 + s + X + (X× s) + 1 ≡
X2 + (1 + X) × s. Note that in the last step we used that 1 + 1 + X ≡ X2. We
therefore have that pnf ((1 + X)× (1 + s) + 1) = X2 + (1 + X)× s. Given arbitrary
function expressions E and F, we can decide whether E ≡ F by first rewriting (using
the identities of integral domains) E and F into fractions P/Q and R/S, respectively,
where P, Q, R, S are integral, and then checking whether pnf (P× S) = pnf (R× Q).
These normal forms are treated in detail in [5].

Example 4.1 We illustrate by computing (a representation of) 〈〈[[E]]〉〉 for the func-
tion expression E = (1 + X)× s. For the transition on input 1 we find that:

((1 + X)× s)[1] = (1[1]⊕ X[1]) ∧ s[1] = (1⊕ 0) ∧ 1 = 1.

((1 + X)× s)1 = ((1 + X)1 × s(1 :s)) + (ι((1 + X)[1])× s1)
= (((11 + X1) + ι(1[1] ∧ X[1]))× (1 + (X× s))) + (ι(1[1]⊕ X[1])× s1)
= ((0 + 1) + (ι(1 ∧ 0)× (1 + (X× s)))) + (ι(1⊕ 0)× s)
= (((0 + 1) + 0)× (1 + (X× s)) + (1× s)
≡ 1 + ((1 + X)× s) = 1 + E

Continuing in this way we find the following minimal realisation of [[E]]:

[[E]]

1|1
##

0|0
��

[[1 + E]]

0|1

cc

1|0
$$

[[X + E]]

0|0

dd

1|1
��
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The normal forms essentially allow us to compute submachines in the final
Mealy machine. However, for arbitrary E ∈ FExpr, the least fixed point con-
struction of 〈〈[[E]]〉〉 is not guaranteed to terminate as it is easy to specify func-
tions that have no finite realisation. For example, if we take E = s × s and we
compute the derivatives E0, E00, E000, . . . we get (modulo equivalence) the sequence
X × E, X2 × E, X3 × E, . . . which are all pairwise inequivalent. A similar argument
shows that E = 1/(1 + (X× s)) has infinitely many stream function derivatives.

We now define a class of expressions that specify functions with finite realisa-
tions. A rational function expression is a function expression of the form

E =
F + (G× s)
1 + (X× H)

where F, G, H ∈ FExpr are closed (i.e., do not contain s), integral function expres-
sions. In other words, F, G and H specify constant bitstream functions whose value
is of the form Bin(x) for some integer x ∈ Z. An example of a rational function
expression is E = ((−X) + (1 + X)× s)/(1 + (X× (X + X))) which specifies f(σ) =
(Bin(−2)+(Bin(1+2)×σ))/Bin(1+2×(2+2)) = (Bin(−2)+(Bin(3)×σ))/Bin(9).
A function f ∈ Γ is called rational if there is a rational function expression E such
that [[E]] = f . Hence the function f(σ) = Bin(3) × σ specified in Example 4.1 is
also rational by taking F = H = 0 and G = 1 + X. The crucial properties of rational
functions are listed in the following lemma.

Lemma 4.2 For all rational functions f ∈ Γ, we have:

1. all stream function derivatives g of f are rational,

2. 〈〈f〉〉 is finite.

Proof. The first item follows from the observation that for all rational function
expressions E = (F + (G× s))/(1+(X×H)) and a ∈ 2, the stream function derivative
[[E]]a is specified by an expression of the form (D + (G× s))/(1 + (X × H)) where D
is a closed, integral expression. This can be verified by writing out the definition
of Ea and rewriting using the integral domain identities. This argument can be
inductively extended to show that all g ∈ 〈〈[[E]]〉〉 are specified by an expression of
the form (Dg + (G× s))/(1 + (X× H)) where Dg is a closed, integral expression.

The second item is proved by showing that the set D = {[[Dg]] | g ∈ 〈〈[[E]]〉〉} is
finite. Recall that for an integer x ∈ Z, Bin(x) = (x0, x1, x2, . . .) is an eventually
constant bitstream, i.e., there is a least n ∈ N such that for all k ≥ n, xk = xn. We
call this n the degree of Bin(x) and write it as deg(Bin(x)). Hence the semantics [[C]]
of a closed, integral function expression C is an eventually constant bitstream. The
main technical argument consists in showing that there is an N ∈ N (which depends
on the degree of [[F ]], [[G]] and [[H]]) such that for all g ∈ 〈〈[[E]]〉〉, deg([[Dg]]) ≤ N .
Since there are only finitely many bitstreams of degree at most N , the set D is
finite. We refer to [5, Ch. 3] for details. qed

The above lemma ensures that synthesis from rational function expressions
terminates. The last theorem summarises our results concerning rational functions.
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Theorem 4.3 For any rational function expression E, the Mealy machine 〈〈[[E]]〉〉 is
a finite, minimal realisation of [[E]], and we can effectively construct a representation
of 〈〈[[E]]〉〉 by computing 〈〈E〉〉 modulo equivalence.

5 Conclusion

We have shown how to construct a finite Mealy machine realisation of rational
2-adic functions. The same principles can be used to perform Mealy synthesis of
functions specified in mod-2 arithmetic (cf. [5, Ch. 3]). We expect that the method
can also be extended to include bitstream functions specified in the Boolean bit-
stream algebra, respectively Kleene bitstream algebra, described in [12] alongside
the 2-adic and mod-2 bitstream algebras. In [12], various “mixed laws” are proved,
that is, identities that involve operators from several of the abovementioned bit-
stream algebras. But although a Mealy machine of “mixed expressions” can be
defined (using the defining stream differential equations of the various operators),
it is not clear how to find mixed laws that provide a complete equational axioma-
tisation of equivalence of mixed expressions.

We mentioned already the similarity between our work and Brzozowski’s con-
struction [3]. A notable difference is that there is no analogue of the classic Kleene
theorem in our setting. More precisely, there are finite Mealy machines that realise
a bitstream function which cannot be specified by any rational function expression
(see [5, Ch. 3]). Given the numeric nature of rational function expressions and
their level of abstraction, we do not find this is so surprising. However, the Kleene
theorem does have a coalgebraic generalisation, as shown in [2], where a notion
of regular expression for polynomial coalgebras is defined. Polynomial coalgebras
can be thought of as generalised labelled transition systems (which, in particular,
include Mealy machines), and their associated regular expressions are similar to
process algebraic expressions. One direction of this generalised Kleene theorem is
obtained by defining coalgebraic structure on the set of expressions such that from
an expression e, a finite coalgebra can be constructed as a generated subcoalgebra
(modulo a suitable congruence).

As the above suggests, the idea of generating behaviour from syntax is possible
at a very general level. Such interplay between algebra (syntax) and coalgebra (be-
haviour) can often be captured by so-called bialgebras for a distributive law (cf. [1]).
Again, the case of regular expressions and deterministic automata form an example
of this much more abstract setup (cf. [9]). Another example is found in the area
of process algebra where the format of structural operational rules corresponds to
a distributive law (cf. [14, 1]). Such a bialgebraic picture also exists for function
expressions and Mealy machines, although in a slightly less direct way compared
with regular expressions and deterministic automata. A paper reporting on this
result is currently under preparation.
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Abstract. In this note, we illustrate how parameterised Boolean equation systems can be employed for
verifying system correctness. Several small examples are used to give a flavour of the more common
techniques available for conducting typical verifications in this setting. We finish with a short discussion
of the research challenges that lie ahead.

1 Introduction

Model checking and equivalence checking have become established techniques for analysing system be-
haviours. In the latter setting, the correctness of an implementation is established by proving that it is
behaviourally equivalent to another, trusted model (the specification), using an appropriate notion of equiv-
alence. All artefacts are within the same formalisms. This starkly contrasts model checking, in which the
specification is assumed to be some requirement or property, formalised in some temporal logic, and the
validity of the specification is checked against a specific implementation.

For finite state systems, model checking and equivalence checking are decidable for a wide variety of
temporal logics and behavioural equivalences. The system behaviours are often generated from concise
descriptions that represent the system behaviours. When represented explicitly, the latter tend to become
extremely large, a phenomenon known as the state space explosion problem. As a result, and in spite of
the decidability of the problem, practical verification may break down nevertheless. Ideally, automated
verification is therefore done at the system description level, as it might offer the means to mitigate the
state space explosion problem.

Specification(s) PBES BES

Process Manipulations

Encoding

PBES Manipulations/Solving

Enumeration

BES Manipulations/Solving

Fig. 1. Verification methodology using Parameterised Boolean Equation Systems.

In this note, we focus on a methodology for the verification of finite- and infinite-state systems that is
capable of taking advantage of such system descriptions. A particular strong point of the methodology is
its versatility:

1. it supports both model checking and equivalence checking;
2. it covers the full spectrum of automation: it offers techniques that can be applied manually, mechani-

cally/assisted to fully automatically;
3. it allows for manipulations of all artefacts at each stage in the verification methodology.

The methodology combines Linear Process Equations (LPEs) [5] for describing system behaviours, first-
order modal µ-calculus [11, 4] for specifying system requirements and parameterised Boolean equation
systems (PBESs) [6, 11], with the special subclass of Boolean equation systems [10], for encoding and
solving the various verification problems. The latter encodings and transformations are fully automated,
see e.g. [4, 7, 2]. A schematic overview of the approach is shown in Figure 1.
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The richness of our problem setting immediately implies a loss of decidability of many of our tech-
niques. In practice, however, many practical problems do not fit in the confines of decidable theories, but
can be solved nevertheless. As a matter of fact, the manipulations of the LPEs and the PBESs offer an addi-
tional array of advantages, even for problems that are known to be decidable. A number of well-understood
manipulations for LPEs have become readily accessible, allowing one to manipulate and minimise the state
space of a system prior to actual verification. PBES technology has followed a similar trend, in which a
number of manipulations have been studied for simplifying a given PBES, up-to the point of solving these.
These include include manual and mechanic techniques such, e.g., symbolic approximation [7] and pattern
matching [6], and fully automated techniques, such as static analysis techniques [13]. Enumeration [3], i.e.,
the process of moving from a PBES to a BES, is inspired by explicit-state verification methodologies. It
is particularly useful for automated verification: solving BESs is decidable (see e.g. [10]) and can be done
efficiently in many practical applications, for instance by translating them to parity games and using state-
of-the-art algorithms for solving these [15, 16, 18]. Also, recently developed transformations can reduce
the size of a BES considerably, which can speed up the process of finding the solution [8, 14].

In this note, we focus on small examples that give a flavour of the complexity of the type of verification
problems that can be dealt with in our methodology, and some of the techniques that exist for dealing
with these. We finish with, what we believe, are promising research directions for further improving our
methodology.

2 Preliminaries: LPEs and the Modal µ-Calculus

We assume the reader has some familiarity with process theory; in particular, given the introductory flavour
of this note, we largely focus on syntax and do not dwell on semantics. Our setting is action-based, i.e.,
events are the primary objects of concern, causing state changes. Process behaviour is described by means
of a high-level syntax, viz., a Linear Process Equation. This is an equation of the following form:

P (d:D) =
∑
{
∑
ei:Ei

ci(d, ei)→ ai(fi(d, ei)) · P (gi(d, ei)) | i ∈ I}

Here, I is a finite set of indices, ai : Dai
, for i ∈ I ranges over some finite set of sorted action names Act,

and D and Ei can be complex sorts; ci : D × Ei → B is a Boolean function, fi : D × Ei → Dai is
an action parameter function that returns an argument of the sort of action ai and gi : D × Ei → D is a
state manipulation function. We sometimes omit the sorts of the actions if these are deemed unimportant.
Intuitively, d represents the current state, which can non-deterministically evolve to a new state gi(d, ei)
(for non-deterministically chosen values for ei), provided that action ai is enabled (i.e., condition ci(d, ei)
should evaluate to true). Given some value d0 of sortD, process P (d0) induces a labelled transition system,
see e.g. [5], as illustrated by the example below.

Example 1. Consider an infinite-state process that can perform an arbitrary number of a actions, then
performs a b action and then performs as many c actions as a actions that were performed. Assume sorts
B and N , representing the Booleans (with elements > (true) and ⊥ (false)) and the natural numbers,
respectively. A partial visualisation of this process, and the LPE are given below:

P (n:N, d:B)
= d −→ a · P (n+ 1, d)
+ d −→ b · P (n,¬d)
+ ¬d ∧ n > 0 −→ c · P (n− 1, d)

P (0,>)

· · ·

· · ·

a

b

a

b

a

b

a

b

c c c c

Model checking allows one to answer whether a process description satisfies some requirement phrased in a
language of temporal or modal logic. One of the most basic modal logics is Hennessy-Milner logic, which
adds the operators 〈a〉φ and [a]φ to propositional logic, with the intended meaning that a state satisfies
〈a〉φ, if it has an a-successor that satisfies φ, and a state satisfies [a]φ if all its direct a-successors (if any)
satisfy φ. Adding least and greatest fixed points to this language leads to one of the more complex and
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powerful modal logics, viz., the propositional modal µ-calculus, see e.g. [9]. In this note, we consider a
first-order extension of this language, defined by the following grammar:

α ::= b | a(e) | ¬α | α ∧ α | α ∨ α | ∀d:D. α | ∃d:D. α
φ ::= b | X(e) | φ ∧ φ | φ ∨ φ | ∀d:D. φ | ∃d:D. φ

| [α]φ | 〈α〉φ | µX(d:D := e). φ | νX(d:D := e). φ

Here, b is a Boolean expression, a(e) is an action with parameter e and X(e) is a recursion variable with
parameter e; such a variable X represents a total function from some domain D to a set of states in a
given process. The formulae generated by α are action formulae: logic is used to describe “interesting”
sets of actions of a process. For instance, the action formula > indicates the entire set of actions, whereas
∃n:N. a(n) describes the set of a-actions with arbitrary natural number parameter. Ignoring the first-order
constructs, the state formulae φ are more or less in line with the state formulae from the modal µ-calculus,
except for the parameterisation of the fixed point formulae. Typically, a formula µX(d:D := e). φ specifies
a fixed point for each value of the parameter d (which is initialised to e). Thus, with some leniency for
notation, µX(c:B := >). φ could be understood as the valueX1 in the simultaneous fixed point expression
µ(X0, X1). (φ[d := ⊥], φ[d := >])[X(⊥) := X0, X(>) := X1]. Formally, a (first-order) modal µ-
calculus formula identifies a set of states in a given labelled transition system, see e.g. [11, 4, 6].

Example 2. Referring to process P of the previous example, one might wish to check whether it is possible
to perform an infinite number of a actions. Computing the set of states that satisfy the following formula
answers this question:

νX.〈a〉X (1)

Similarly, verifying whether along every a path, always a b action is attainable, requires checking:

νV. ([a]V ∧ µW. (〈a〉W ∨ 〈b〉>)) (2)

Illustrating the use of parameterisation of fixed points: verifying that the number of c actions following the
b action is exactly the same as the number of a actions that preceded the b action requires checking:

νY (i:N := 0).[a]Y (i+ 1) ∧ [b](µZ(j:N := 0). (([c]Z(j + 1) ∧ 〈c〉>) ∨ (j = i ∧ [c]⊥))) (3)

The above formula relies on the data parameters i and j to count the number of a and c actions.

3 Equation Systems

Verifying whether a µ-calculus formula holds for a given process is possible in case the process has a finite
number of states, although this is not sufficient: depending on the data occurring in the formula, the problem
might or might not be computable. For instance, the value for i in formula (3) can grow unbounded, even
when interpreted on a finite state process.

Parameterised Boolean Equation Systems (or equation systems for short) are finite sequences of fixed
point equations, where each equation is of the form

(
µX(d:D) = φ

)
or
(
νX(d:D) = φ

)
. The left-hand

side of each equation consists of a fixed point symbol, where µ indicates a least and ν a greatest fixed
point, and a sorted predicate variable X representing formulae from some domain D to the Booleans. The
right-hand side of each equation is a predicate formula, given by the following grammar:

φ ::= b | X(e) | φ ∧ φ | φ ∨ φ | ∀d:D. φ | ∃d:D. φ

The encodings of [4, 6] allow one to automatically construct an equation system given an LPE and a µ-
calculus formula, ensuring that the equation system codes in which states of the LPE the µ-calculus formula
is true. Observe that one needs to solve the equation system first, meaning that one needs to eliminate all
occurrences of predicate variable instances X(e) from the right-hand sides of the equations.
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Example 3. The equation system encoding whether process P (0,>) satisfies formula (1) is as follows:(
νX(n:N, d:B) = d ∧X(n+ 1, d)

)
(4)

The validity of property (2) is encoded by the following equation system:(
νV (n:N, d:B) = (d =⇒ V (n+ 1, d)) ∧W (n, d)

)(
µW (n:N, d:B) = d ∨ (d ∧W (n+ 1, d))

) (5)

Finally, encoding the validity of property (3) for process P (0,>) leads to the following equation system:(
νY (n:N, d:B, i:N) = (d =⇒ Y (n+ 1, d, i+ 1)) ∧ (d =⇒ Z(n,¬d, i, 0))

)(
µZ(n:N, d:B, i:N, j:N) = (i = j ∧ (d ∨ n = 0)) ∨ (Z(n− 1, d, i, j + 1) ∧ ¬d ∧ n > 0)

) (6)

A special fragment of equation systems is the subset of Boolean equation systems: equation systems in
which the right-hand sides of the equations are void of first-order constructs and data, and the left-hand sides
consist of non-parameterised proposition variables. This fragment is of particular interest since computing
the solution to Boolean equation systems is decidable. The process of transforming an equation system into
a Boolean equation system is akin to a state space exploration, see [3].

Example 4. Consider the equation system of (4). Assume one is interested in the value for X(0,>). For
each X(i, b), we introduce a fresh proposition variable Xi,b. Then one can generate the following (infinite)
sequence of equations:

(νX0,> = > ∧X1,>) (νX1,> = > ∧X2,>) (νX2,> = > ∧X3,>) · · ·

In many practical cases, such an exploration terminates, after which the Boolean equation system can be
solved, leading to a partial solution for the original equation system. Although in the above example, the
exploration does not terminate, one can still transform the equation system into one for which termination
is guaranteed. Some of these techniques are discussed in the next section.

A word on semantics. Predicate formulae φ are interpreted in the context of environments η for predicate
variables and ε for data variables, notation [[φ]] ηε. An equation (σX(d:D) = φ) can be interpreted as a
σ-fixed point over the set of functions with semantic domain D and co-domain B. We write φ〈d〉, for the
(syntactic) functional (λd:D. φ). The interpretation of φ〈d〉, denoted [[φ〈d〉]] ηε, is given by the functional
(λv∈D. [[φ]] ηε[v/d]). The set of (total) functions f :D → B, denoted by BD, equipped with the point-
wise ordering v is a complete lattice. Assuming that the domain of the predicate variable X is of sort D,
the functional [[φ〈d〉]] ηε induces a monotone predicate formula transformer λg∈BD. ( [[φ〈d〉]] η[g/X]ε). The
existence of extremal fixed points of such transformers is guaranteed by Tarski’s celebrated fixed point
Theorem [17].

Definition 1. The solution of an equation system in the context of a predicate environment η and a data
environment ε is inductively defined as follows, for any E:

[[ε]] ηε =def η
[[(σX(d:D) = φ)E ]] ηε =def [[E ]] (η[σf ∈ BD. [[φ〈d〉]] ( [[E ]] η[f/X]ε)ε/X])ε.

The definition of a solution is rather complex; this is largely due to its use of the tree-like recursion.
Nevertheless, the solution of an equation system has the following characteristics:

1. It respects the equivalences of each equation semantically;
2. It prioritises the fixed point signs of equations that come first over the signs of equations that follow.

As a result, the solution is sensitive to the order of equations in an equation system: the solution to (µX =
Y )(νY = X), which is ⊥ for X and Y differs from that of (νY = X)(µX = Y ), which assigns > to X
and Y .
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Fig. 2. The effect of constant parameter elimination on the instantiation time required to obtain a BES from an equation
system encoding the deadlock-freedom property for n dining philosophers (left) and for n Milner schedulers (right).
Time is measured in minutes (y-axis). Solid line: time for exploring the original equation system. Dotted line: time for
exploring the equation system after constant elimination.

4 Manipulating Equation Systems

Given any equation (σX(d:D) = φ), one can substitute φ with an arbitrary formula ψ that is logically
equivalent, i.e., [[φ]] ηε = [[ψ]] ηε for all environments. Simplifying the predicate formulae prior to exploring
the equation system can significantly speed up the generation of the underlying Boolean equation system.
Using invariants — a set of formulae (one per equation) that characterise the relation between left-hand
side data parameters, identifying a closed subset of Boolean equations underlying the equation system —
one can strengthen the right-hand sides of an equation system, thereby increasing the likelihood of being
able to simplify the strengthened formulae. This, however, defers the problem of rewriting to the problem
of detecting invariants, which, in general, is quite hard. Nevertheless, specific classes of invariants can
be detected efficiently. Among these, we find invariants of the form

∧
i∈I di = ei, where each di is a

data parameter occurring at the left-hand side of an equation, and ei is an actual concrete value for this
parameter. Such invariants allow one to actually substitute the value ei for each occurrence of variable di

in the right-hand side of a given equation. Likewise, one can use invariants of the form
∧

i∈I,j∈J di = dj ,
to replace the parameters dj by di in the right-hand side of a given equation.

Example 5. Consider equation (4). Suppose we are interested in the solution to X(0,>). We find that
d = > is in fact an invariant for the equation; hence, equation (4) can be rewritten to:(

νX(n:N) = X(n+ 1)
)

(7)

Likewise, when we are interested in the solution to V (0,>) in equation system (5), we find that d = > is
an invariant for both equations, allowing equation system (5) to be rewritten to:(

νV (n:N) = V (n+ 1) ∧W (n)
) (
µW (n:N) = >) (8)

Finally, in case we are interested in the solution to Y (0,>, 0), defined by equation system (6), we find that
d = > is an invariant for Y and d = ⊥ is an invariant for Z. This reduces (6) to:(

νY (n:N, i:N) = Y (n+ 1, i+ 1) ∧ Z(n, i, 0)
)(

µZ(n:N, i:N, j:N) = (i = j ∧ n = 0) ∨ (Z(n− 1, i, j + 1) ∧ n > 0)
) (9)

Figure 2 illustrates the effect that such a constant detection can have on the time it requires to explore an
equation system in an on-the-fly manner: the exploration times in these examples reduce dramatically. It
should be noted that invariants do not reduce the size of a Boolean equation system; they merely help in
speeding up rewriting. In contrast, some data parameters of an equation system do not manifest themselves
in the solution to the equation system, while they can still be a major source for the blow-up in size of
the Boolean equation system. For instance, in equation (7), one can show that the solution to X(n) is >,
regardless of the value for n; in a sense, n is redundant.

A semantic analysis of redundancy is not feasible for most complex equation systems: it would require
one to first solve the equation system. As a next best solution, one can approximate the set of redundant

NVTI  Nieuwsbrief 2010  Pagina 55 van 71



parameters by means of an analysis of the predicate formulae occurring in an equation system. By con-
structing a graph of all the (syntactic) influences one parameter exerts on another parameter’s values, one
can efficiently deduce a set of parameters that do not influence the solution of an equation system at all.
These can be removed immediately; the entire analysis is easily automated, see [13].

Example 6. Consider equation (7). A syntactic analysis of redundancy reveals that parameter n cannot
influence the solution to X . As a result, equation (7) can be rewritten to:(

νX = X
)

(10)

This equation is a Boolean equation, which is easily seen to have solution X = >, see [10], so, follow-
ing [13], we know that X(n) = > for all n. Parameter n is equally redundant in equation system (8),
allowing this equation system to be rewritten to:(

νV = V ∧W
) (
µW = >

)
(11)

Again, the resulting equation system belongs to the decidable fragment of equation systems; computing its
solution leads to the answer V = > and W = >. Note that none of the parameters in equation system (9)
can be identified as redundant using this technique. In fact, the solution to this equation system cannot
(yet) be computed automatically. An inspection by hand reveals that n = i is an invariant for Y , whereas
j = i− n is an invariant for Z. Simplifying equation system (9) using these invariants leads to:(

νY (n:N) = Y (n+ 1) ∧ Z(n, n)
) (
µZ(n:N, i:N) = (n > 0 =⇒ Z(n− 1, i))

)
(12)

Parameter i can subsequently be removed, as it turns out to be redundant:(
νY (n:N) = Y (n+ 1) ∧ Z(n)

) (
µZ(n:N) = (n > 0 =⇒ Z(n− 1))

)
(13)

The resulting equation system immediately renders to one of the patterns identified in [7], introducing an
existential quantifier and removing the recursion:(

νY (n:N) = Y (n+ 1) ∧ Z(n)
) (
µZ(n:N) = ∃j:N. 0 = n− j

)
(14)

The equation for Z can be replaced by> automatically, using a one-point rule for existential quantification.
This allows one to further remove the parameter n in both equations, leading to(

νY = Y ∧ Z
) (
µZ = >

)
(15)

Solving the above Boolean equation system leads to the answer Y = Z = >. From this, we can deduce that
process P (0,>) indeed satisfies property (3). The above computations show that one can verify complex
formulae on infinite processes using a variety of tools and techniques, switching between automated and
manual techniques at will.

An example of the effect that an analysis of redundancy can have in practice is shown in Table 1, taken
from [13]. It shows the size of the generated Boolean equation systems before and after removing redundant
parameters; the equation systems encode a model checking problem on typical communication protocols.
We finish this section with a more complex example, taken from [7]. It nicely illustrates the power of the
first-order extensions of the modal µ-calculus.

Example 7. Consider a process that merges two streams of natural numbers, producing a locally ascending
output sequence. A formal description of our system is given by the linear process below. The initial state
of the system is described by process Merge(0, 0, 0). In the LPE, the parameter σ is a state parameter; for
instance, σ = 1 indicates that the process has to read from the first stream, whereas σ = 2 indicates that
the merger must read stream two. The values, read from the streams, are stored in parameters i1 and i2.

Merge(σ, i1, i2 : N)
=∑

m : N. σ = 0→ r1(m) ·Merge(2,m, i2)
+
∑
m : N. σ = 0→ r2(m) ·Merge(1, i1,m)

+
∑
m : N. σ = 1→ r1(m) ·Merge(3,m, i2)

+
∑
m : N. σ = 2→ r2(m) ·Merge(3, i1,m)

+
∑
m : N. σ = 3 ∧ i1 ≤ i2 → s(i1) ·Merge(1, i1, i2)

+
∑
m : N. σ = 3 ∧ i2 ≤ i1 → s(i2) ·Merge(2, i1, i2)
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Table 1. The effect of redundancy elimination on the size of the resulting BES; we write x/y to indicate the size of the
induced BES without (x) and with (y) elimination of redundancy.

Property: Possibly infinitely often receive a constant message m ∈M (νX.µY.〈r(m)〉X ∨ 〈¬r(m)〉Y )
|M | → 2 4 8 ∞

Protocol ↓
ABP 77 / 41 149 / 41 293 / 41 ∞ / 41
PAR 95 / 51 183 / 51 359 / 51 ∞ / 51
CABP 513 / 257 1,121 / 257 2,721 / 257 ∞ / 257
One-bit SWP 379 / 181 991 / 181 3,079 / 181 ∞ / 181
SWP (buffer size 2) 17,809 / 2,545 163,393 / 2,545 1.9 ∗ 106 / 2,545 ∞ / 2,545
SWP (buffer size 4) 3.5 ∗ 106 / 64,609 nc / 64,609 nc / 64,609 ∞ / 64,609

There is some non-determinism in the process’ behaviour when the values last read over both streams are
equal: one of these values is sent and the stream from which it came is read from subsequently. Suppose
we wish to validate that the system produces an ascending output stream when offered two ascending input
streams. This is expressed by the following formula:

(νX(j1, j2, o:N := 0, 0, 0).∀l:N. ([r1(l)](l ≥ j1 ⇒ X(l, j2, o))∧
[r2(l)](l ≥ j2 ⇒ X(j1, l, o))∧
[s(l)](l ≥ o ∧X(j1, j2, l))))

Combining the resulting linear process with the above formula, and after applying some simplifications,
we obtain the below equation.

νX(σ, i1, i2, j1, j2, o:N) = ∀l:N. (σ = 0⇒ l ≥ j1 ⇒ X(2, l, i2, l, j2, o))
∧(σ = 0⇒ l ≥ j2 ⇒ X(1, i1, l, j1, l, o))
∧(σ = 1⇒ l ≥ j2 ⇒ X(3, i1, l, j1, l, o))
∧(σ = 2⇒ l ≥ j1 ⇒ X(3, l, i2, l, j2, o))
∧((σ = 3 ∧ i1 ≤ i2)⇒ (i1 ≥ o ∧X(1, i1, i2, j1, j2, i1)))
∧((σ = 3 ∧ i2 ≤ i1)⇒ (i2 ≥ o ∧X(2, i1, i2, j1, j2, i2))))

Whenever X(σ, i1, i2, 0, 0, 0) holds, we find that process Merge(σ, i1, i2) satisfies the required property.
A closer inspection of the equation reveals the following invariant:

i1 = j1 ∧ i2 = j2 ∧ o ≤ min(i1, i2)

The equation can be put into the shape of a recently identified pattern, see [12]. As a result, we conclude
that X(σ, i1, i2, j1, j2, o) is true for all values of the data parameters that satisfy the invariant. From this, it
follows that Merge(0, 0, 0) satisfies the ascendingness property.

5 Research Challenges

Equation system (9) and Example 7 are a point in case where automation in the computation of the solutions
is largely lacking. Improvements should come from two complementary approaches: symbolic manipula-
tions and through the use of brute force.

The redundancy elimination and the constant detection of the previous section are typical examples
of symbolic manipulations: based on the outcomes of a syntactic scrutiny of an equation system, it is
transformed into one that is of smaller complexity. These techniques take their inspiration from techniques
that have been developed for analysing linear processes. A technique that has led to significant reductions
in the complexity of linear processes is confluence reduction. Porting this technique to equation systems,
however, has thus far proved to be elusive. Part of the challenge is that —unlike linear processes— equation
systems lack a behavioural interpretation. Other challenges include devising methods for dealing with dense
data domains that occur in equation systems when verifying real-time systems.
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The semantics of an equation system has turned out to offer little support in proving the correctness of
manipulations on equation systems: it is not uncommon for these to be quite arduous. There is a clear need
for a more suitable proof methodology, better supporting such correctness proofs. A likely side effect of
such a proof methodology is a better understanding of the framework of equation systems.

Symbolic manipulations rarely solve a PBES completely; most likely, a transformation to a Boolean
equation system is needed at some point. The sizes of the Boolean equation systems in Table 1 are a good
indication of what one can expect in practice. One should therefore invest in parallelising this exploration
process, taking inspiration from recent advances in the parallelisation of state space exploration, see e.g. [1].
Unlike state space generation, in which the state space is the artefact of interest, exploration of an equation
system yields a Boolean equation system that still has to be solved. The ultimate challenge lies in combin-
ing both tasks, i.e., generate and solve the Boolean equation system on-the-fly in a parallel setting. Even
parallelising only the process of solving a Boolean equation system may fuel the debate of what the most
effective (parallelisable) algorithm is, given a particular application domain. In the end, parallel algorithms
may even shed new light on the true complexity of solving Boolean equation systems.
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Abstract. Decomposition is a technique to split a problem in a number of parts
such that some global property of the problem can be obtained or preserved by
concurrent processing of these parts. One goal of decomposition is to find solu-
tions to a global constraint system by distributed computations. Decomposition
then should enable the merging of local solutions to a global solution and, there-
fore, decomposition should aim at preserving solutions. Another aim of decom-
position, often encountered in the database (and sensor network) community, is
to preserve consistency: as long as adding constraints to a local constraint store
does not cause any inconsistencies, the consistency of the global constraint store
should be preserved.
Although satisfying these preservation properties seem to require different de-
composition modes, we show that in fact these properties are equivalent: when-
ever a decomposition is consistency preserving, it is also solution preserving and
vice-versa. We then show that the complexity of finding such decompositions is
polynomially related to finding solutions for the original constraint system, ex-
plaining the popularity of decomposition applied to tractable constraint systems.

1 Introduction
Background and Motivation We are interested in decomposition as a technique to
provide coordination mechanisms for independent problem solvers. Such coordination
mechanisms should ensure that each individual problem solver can solve its part of the
problem independently of the others. Moreover, it should ensure that, whatever contri-
bution is made by each individual problem solver, their joint contribution should meet
some predefined criteria. Examples of problems requiring such coordination mecha-
nisms are building a house by different subcontractors, executing reconnaissance tasks
by several units, and planning of ground handling processes by several service providers
at airports.

To provide a common framework for discussing decomposition, we focus upon con-
straint problems, solvable by constraint processing. The basic idea behind constraint
solving is to represent combinatorial problems by a constraint system. The basic ingre-
dients of a constraint system S are a set C of constraints over a set X of variables xi
each taking values in some domain of values Di. A constraint system S is said to be
? This contribution is based on joint work with Wiebe van der Hoek and Michael Wooldridge,

Department of Computer Science, University of Liverpool, UK.
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solved if we have found values d ∈ Di for each of the variables xi ∈ X such that all the
constraints c ∈ C are satisfied. In artificial intelligence research, for example, constraint
systems have been used to represent such diverse problems as planning and scheduling,
resource allocation, design and configuration problems [Dec03]. In the database com-
munity, constraints have also been used as integrity constraints to ensure the integrity
of data stored and manipulated.

In both areas, distributed constraint systems have been a major focus of research. In
a distributed constraint system, one distinguishes a set of agents Ai each controlling a
disjoint subset of variables Xi ⊆ X . Each agent Ai is responsible for those constraints
whose variables occur in its control set Xi ( its set of local constraints). Agents have
to interact with other agents for solving the set of global constraints, whose variables
occur in different components Xi. If communication between the agents is difficult or
agents do not wish to communicate, enforcing these global constraints becomes an is-
sue. Therefore, much research has been done on decomposing distributed constraint
systems, that is, to replace each global constraint by a suitable set of local constraints,
in such a way that the need for interaction during the problem solving process is elimi-
nated. We call such a system a completely decomposed constraint system.

With respect to decomposition in constraint systems, however, the focus of research
within the artificial intelligence (AI) community has been quite different from the focus
within the database community. In AI applications one typically assumes that the local
constraints are controlled by agents whose (common) task is to assign suitable values to
the variables such that all constraints are satisfied. Decomposition has to ensure that the
local constraints can be solved completely independently from the others, after which
the local solutions can always be merged to yield a solution to the complete system.
Hence, in AI research the focus of decomposition has been on a solution preserving
property (see e.g. [Hun02,KL09]): in obtaining a global solution, local solutions should
always be preserved in order to ensure independent local problem solving.

On the other hand, the focus in the database community has been on the use of in-
tegrity constraints for distributed databases that ensure that, whatever local information
satisfying these constraints is added to the (distributed) database, the consistency of the
total database will be preserved [GW93,BKV04]. Hence, in the database community,
one focuses on the preservation of consistency in constraint systems: how to guarantee
that when updating local databases and only ensuring their local consistency, the con-
sistency of the resulting global constraint system (i.e. the union of all local databases +
integrity constraints) will remain consistent, too.

Our focus of research In this paper, we would like to investigate this idea of using
a completely decomposed constraint system to enable independent problem solving.
In particular, we would like to investigate the relation between the above mentioned
decomposition criteria: solution preservation and consistency preservation.

The first question that comes in mind then is: what is the exact relationship between
preservation of solutions versus preservation of consistency notions: are these decom-
position criteria equivalent, does one imply the other, or are they independent?
By analyzing the underlying notions and presenting a framework for decomposition,
in this paper we will show that preserving consistency and preserving solutions are
equivalent.
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Having identified these two decomposition criteria, next, one would like to know
how difficult is it to find a suitable decomposition (preserving solutions or preserving
consistency), given a set of agents each controlling a part of the variables in a constraint
system. Again, we will provide an answer by proving that finding a solution preserving
decomposition for a constraint system is as hard as finding a solution for the constraint
system as a whole.

Remark 1. We would like to remark that there are other views on decomposition in
constraint systems as expressed by structural decomposition methods [GLS99] and by
the distributed constraint optimization (DCOP) approach[MSTY03]. In the structural
decomposition view (i) the structure of the problem (i.e., the set of constraints) dictates
the way in which the subproblems are generated and (ii) in general, the decomposition
will not allow the subproblems to be independently solvable. In the DCOP approach,
the partitioning of the variables is given, but, in general, the result of decomposition
is not a set of independently solvable subproblems. Our approach differs from these
approaches in the sense that, unlike the structural decomposition approach, we are in-
terested in decomposition methods that take a given partitioning of the variables into
account. Secondly, unlike both the DCOP and structural decomposition approach, we
require a complete decomposition of the original problem instance, that is, we would
like to find a set of subproblems that can be solved concurrently and independently to
obtain a complete solution to the original instance.

This paper is organised as follows. In Section 2 we discuss the necessary technical
preliminaries. In Section 3 we discuss the equivalence between consistency and solution
preserving decompositions. In Section 4 we show that solving a constraint system is –
neglecting polynomial differences– as hard as finding a decomposition for it. Finally, in
Section 5, we state some final conclusions to place this work into a broader perspective.

2 Preliminaries

In this section we briefly define constraint systems, distributed constraint systems, and
decompositions of distributed constraint systems.
Constraint Systems A constraint system is a tuple S = 〈X,D,C〉 where X is a
(finite) set of variables, D is a set of (value) domains Di for every variable xi ∈ X ,
and C is a set of constraints over X . We assume constraints c ∈ C to be specified as
formulas over some language. To preserve generality, we don’t feel the need to specify
the set of allowable operators used in the constraints c ∈ C and their interpretation.
A solution σ of the system is an assignment σ = {xi ← di}ni=1 to all variables in X
such that each c ∈ C is satisfied. The set of such solutions σ is denoted by Sol(S). S
is called consistent if Sol(S) 6= ∅. We assume the set of solutions Sol(S) to be anti-
monotonic in the set of constraints; that is, if S = 〈X,D,C〉 and S ′ = 〈X,D,C ′〉 are
such thatC ⊆ C ′, then Sol(S ′) ⊆ Sol(S). For every c ∈ C, let Var(c) denote the set of
variables mentioned in c. For a set of constraints C, we put Var(C) =

⋃
c∈C Var(c).

Given S = 〈X,D,C〉, we obviously require Var(C) ⊆ X . If D is a set of value
domains Di for variables xi ∈ X and X ′ ⊂ X then DX′ is the set of value domains Di

of the variables xi ∈ X ′. Likewise, given a set of constraints C and a set of variables
X ′, we let CX′ denote the subset {c ∈ C | Var(c) ⊆ X ′} of constraints over X ′.
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Distributed constraint systems and decompositions In this paper we consider con-
straint systems S that are distributed [YH96]; that is, there is a set ofN agentsAi, each
being able to make assignments to or to add constraints over a subset Xi of the set X
of variables. Here, we assume that agents do not share control over the variables, and
that every variable is controlled by an agent. Hence, the collection {Xi}Ni=1 constitutes
a partitioning of X , i.e.,

⋃N
i=1Xi = X , and, for 1 ≤ i < j ≤ N , Xi ∩Xj = ∅.

Given a constraint system S = 〈X,D,C〉 and a partitioning {Xi}Ni=1 of X , we
call the tuple (S, {Xi}Ni=1) a distributed constraint system, derived from S. We are
particularly interested in those distributed systems (S, {Xi}Ni=1) where each agent Ai,
controlling the set Xi, only processes a set of constraints over Xi, and does not take
into account other constraints. That effectively implies that in such a case, instead of
one constraint system S and a partition {Xi}Ni=1, we have a set of independent con-
straint systems Si = 〈Xi, Di, C

′
i〉, where each C ′

i is a set of constraints over Xi, i.e.,
V ar(C ′

i) ⊆ Xi. We call the resulting set S ′ = {Si = 〈Xi, Di, C
′
i〉}Ni=1 of such sub-

systems a decomposed constraint system1. We say that such a decomposed constraint
system S ′ is consistent if

⋃
i C

′
i is consistent.

In order to relate a distributed constraint system (S, {Xi}Ni=1) to a decomposed
constraint system S ′, we discuss two ways in which decomposed systems can be used
to process the constraints in S.

Solution preserving decompositions A decomposed system can be used to preserve
solutions of a global constraint system: the individual solutions σi of the subsystems Si
of a decomposed system S ′ = {Si = 〈Xi, Di, C

′
i〉}Ni=1 can be used to compose a global

solution σ for a global constraint system S. In that case the decomposed system is said
to be solution preserving if each collection of local solutions can be used to compose a
global solution:

Definition 1. Let (S, {Xi}Ni=1) be a distributed constraint system.
Then S ′ = {Si = 〈Xi, Di, C

′
i〉}Ni=1 is said to be a solution-preserving decomposition

w.r.t. (S, {Xi}Ni=1) if ∅ ⊆ Sol(S1)×Sol(S2)× . . .×Sol(SN ) ⊆ Sol(S). S ′ is said to
be strictly solution preserving if the first inclusion is strict whenever Sol(S) 6= ∅.2

Example 1. Let S = 〈X,D,C〉 be a constraint system where C = {x1 ∧ x2, x1 ∨
x3, x1 ∨ x4} is a set of boolean constraints over X = {x1, x2, x3, x4}. If X is parti-
tioned as {X1 = {x1, x2}, X2 = {x3, x4}}, the decomposition S ′ = {S1,S2} where
S1 = 〈{x1, x2}, D1, {x1 ∧ x2}〉 and S2 = 〈{x3, x4}, D2, ∅〉 is a strictly solution pre-
serving decomposition of S: S1 has a unique solution Sol(S1) = {{x1 ← 1, x2 ← 1}},
while S2 has a ”universal” solution set: Sol(S2) = {{x3 ← i, x4 ← j} : i, j ∈
{0, 1}}. Every solution in Sol(S1)× Sol(S2) is a solution to S , because x1 as well as
x2 is assigned to true. Hence, S ′ = {S1,S2} is strictly solution preserving.

Note that, in general, not every solution σ ∈ Sol(S) will be obtainable as the merge of
local solutions σi.

1 For the moment, we do not specify any relationship between C′
i and CXi .

2 This is needed to take care for inconsistent constraint systems.
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Consistency preserving decompositions In distributed database applications one dis-
tinguishes local constraints from global (integrity) constraints. Usually, in such appli-
cations, agents are free to add constraints to their set of local constraints as long as the
resulting set remains consistent. The problem then is to ensure that local consistency
ensures global consistency. This global consistency has to be ensured by the set of in-
tegrity constraints. In order to prevent communication overload between the distributed
sites, one often tries to distribute these integrity constraints over the sites in such a way
that satisfaction of all the local versions of the constraints imply the satisfaction of the
global constraints. To simplify the discussion, we concentrate on the case where each
site is allowed to add constraints to their local store. Consistency preservation then
means that the total set of original constraints + locally added constraints is consistent,
whenever the added information does not cause any local inconsistency. We need the
following definitions.

Definition 2. Let S = 〈X,D,C〉 be a constraint system. An extension of S is a con-
straint system E(S) = 〈X,D,C ′〉 where C ⊆ C ′.

Definition 3 (consistency preserving extensions). Let (S, {Xi}Ni=1) be a distributed
constraint system, where S = 〈X,D,C〉. A decomposition S ′ = {Si = 〈Xi, Di, C

′
i〉}Ni=1

is called consistency preserving w.r.t. (S, {Xi}Ni=1) if the following condition holds:
whenever every local extension E(Si) = 〈Xi, Di, C

′′
i 〉 of Si is consistent, E(S) =

〈X,D,C ∪ (C ′′
1 − C ′

1 ∪ . . . ∪ (C ′′
N − C ′

N )〉 is consistent.
S ′ is said to be strictly consistency preserving if, moreover, it holds that every Si is
consistent whenever S is consistent.

Example 2. Consider the constraint system specified in Example 1. It is not difficult to
show that the given decomposition S ′ = {S1,S2} is also a strictly consistency preserv-
ing decomposition w.r.t. (S, {Xi}Ni=1): Let E(S1) and E(S2) be two consistent exten-
sions of S1 and S2, respectively. Since S1 has a unique solution Sol(S1) = {{x1 ←
1, x2 ← 1}}, it follows that Sol(E(S1)) = Sol(S1). Likewise, Sol(E(S2)) ⊆ Sol(S2)
and Sol(E(S2)) 6= ∅. Now, take an arbitrary solution from Sol(E(S1)) as well as from
Sol(E(S2)). Then, since these solutions are also solutions of S1 and S2 respectively,
by the solution preservation property, there exists a solution satisfying the original set
of constraints and all constraints added to this set. Hence, the decomposition is strictly
consistency preserving as well.

3 Consistency and solution preserving decompositions

Given the two preservation properties we distinguished in decompositions of constraint
systems, the first question we should answer is how they are related: are they indepen-
dent, is one subsumed by the other, or are they in fact equivalent?

Intuitively, it seems not hard to conclude that consistency preservation is subsumed
by solution preservation: whatever information is added to a local constraint store, if the
result is consistent, a solution for the global store can be found by solution preservation.
Hence, there should be a global solution, and, therefore, it is not difficult to show that
the global constraint store + the added constraints is a consistent set as well. More
precisely:
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Proposition 1. Let (S, {Xi}Ni=1) be a distributed constraint system.
If S ′ = {Si = 〈Xi, Di, C

′
i〉}Ni=1 is solution preserving w.r.t. (S, {Xi}Ni=1), then S ′ is

also consistency preserving w.r.t. (S, {Xi}Ni=1).

Proof. Assume S ′ = {Si = 〈Xi, Di, C
′
i〉}Ni=1 to be solution preserving w.r.t.

(S, {Xi}Ni=1). Then we have Sol(S1)× . . .×Sol(SN ) ⊆ Sol(S). For i = 1, 2, . . . , N ,
consider arbitrary (consistent) extensions E(Si) = 〈Xi, Di, C

′′
i 〉 of the local subsys-

tems Si. For each subsystem E(Si), select an arbitrary assignment σi ∈ Sol(E(Si)).
Since C ′′

i ⊇ C ′
i, it follows that ∅ 6= Sol(E(Si)) ⊆ Sol(Si). Hence, by solution preser-

vation, the assignment σ = σ1 t . . . t σN will satisfy S. Therefore, σ |= C. By
definition of σi and the fact that every C ′′

i − C ′
i is a set of constraints over Xi, and the

sets Xi are disjoint, it follows that σ |= (C ′′
1 − C ′

1) ∪ (C ′′
2 − C ′

2 ∪ . . . (C ′′
N − C ′

N ).
Hence, σ |= C ∪ (C ′′

1 −C ′
1)∪ (C ′′

2 −C ′
2 ∪ . . . (C ′′

N −C ′
N ), therefore, σ ∈ Sol(E(S)).

So, Sol(E(S)) 6= ∅ and, consequently, S ′ is consistency preserving with respect to
(S, {Xi}Ni=1). �

Perhaps surprisingly, the converse is also true: consistency preservation implies so-
lution preservation. The intuition behind this result is that every solution to a constraint
system can be encoded as a special update of the constraint store. The resulting con-
straint store will have this solution as its unique solution. By consistency preservation,
the resulting global constraint store will be consistent. Hence, this decomposition will
also be solution preserving, since the merge of all local solutions will be the unique
solution of the resulting system.

Proposition 2. Let (S, {Xi}Ni=1) be a distributed constraint system.
If S ′ = {Si = 〈Xi, Di, C

′
i〉}Ni=1 is consistency preserving w.r.t. (S, {Xi}Ni=1), then S ′

is also solution preserving w.r.t. (S, {Xi}Ni=1).

Proof. Assume S ′ = {Si = 〈Xi, Di, C
′
i〉}Ni=1 to be consistency preserving w.r.t.

(S, {Xi}Ni=1). By assumption, for every subsystem Si and every extension E(Si) =
〈Xi, Di, C

′′
i 〉 of Si, it must hold that, whenever the extended local systems E(Si) are

consistent, then the global extended system E(S) = 〈X,D,C ∪ (C ′′
1 − C ′

1) ∪ . . . ∪
(C ′′

N − C ′
N 〉 is also consistent.

For each i = 1, . . . , N , let σi be an arbitrary solution to Si = 〈Xi, Di, C
′
i〉. Since

{Xi}Ni=1 is a partition, the assignment σ = σ1 t . . . t σN is well-defined. We have to
show that σ ∈ Sol(S).
For i = 1, . . . , N , consider the extensions E(Si) = 〈Xi, Di, C

′′
i 〉, where C ′′

i = C ′
i ∪

{x = σ(x) : x ∈ Xi}. Then, for every i = 1, 2, . . . , N , E(Si) is consistent and each
σi is the unique solution of E(Si).
By consistency preservation, the extensionE(S) = 〈X,D,C∪(C ′′

1 −C ′
1∪ . . .∪(C ′′

N−
C ′
N )〉 is consistent, too. Hence Sol(E(S)) 6= ∅.

Now observe that C ∪ (C ′′
1 −C ′

1)∪ . . .∪ (C ′′
N −C ′

N ) = C ∪{x = σ(x) : x ∈ X}.
Hence, it follows that σ is the unique solution of E(S) and therefore, σ |= C. Hence
σ ∈ Sol(S) and the decomposition S ′ is also solution preserving. �

As a consequence of both propositions we have that a decomposition is consistency
preserving iff it is solution preserving. It is not difficult to show that this equivalence
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also holds for the strictly preserving versions. This immediately implies that all results
that have been obtained for consistency preserving decompositions such as occur in
[BKV04,MC04] can be used for solution preserving approaches to decomposition as
well.

4 Finding solution preserving decompositions

The equivalence between solution preserving and consistency preserving decomposi-
tions does not tell us how we could obtain such decompositions. In this section, we
will discuss the problem of finding suitable decompositions. Given the above proven
equivalence, in this section we concentrate on the solution preservation property of de-
compositions.

In general it is not difficult to prove that deciding whether a decomposition is solu-
tion preserving is a coNP-complete problem. We can, however, obtain a more detailed
result by relating the difficulty of finding a strictly solution preserving decomposition
for a constraint system S belonging to a class of constraint systems to the difficulty of
finding a solution to S:

Proposition 3. Let C be an arbitrary class of constraint systems allowing at least
equality constraints. Then there exists a polynomial algorithm to find a solution for
constraint systems S in C iff there exists a polynomial algorithm that, given a constraint
system S ∈ C and an arbitrary partition {Xi}Ni=1 of X , finds a strictly solution pre-
serving decomposition w.r.t. (S, {Xi}Ni=1).

Proof. Suppose that there exists a polynomial algorithm A to find a solution for con-
straint systems in C. We show how to construct a polynomial algorithm for finding a
decomposition for an arbitrary partition of such a constraint system. Let S ∈ C be con-
straint system and {Xi}Ni=1 an arbitrary partitioning of X . To obtain a decomposition
S ′ = {Si = 〈Xi, Di, C

′
i〉}Ni=1 of S, first, using A, we compute a solution σ of S. For

every Xi, let Cσi
= {x = d | x ← d ∈ σ, x ∈ Xi} be a set of unary constraints for

variables in Xi directly obtained from σ. Then the subsystems Si = (Xi, Di, C
′
i) are

simply obtained by setting C ′
i = CXi ∪Cσi . Note that each of these subsystems Si has

a unique solution σi = {x ← d ∈ s | x ∈ Xi} and the merging of these solutions σi
equals σ, i.e. a solution to the original system S. Clearly, S ′ = {Si = 〈Xi, Di, C

′
i〉}Ni=1

is a solution preserving decomposition for S that can be obtained in polynomial time.
Conversely, suppose we can find a strictly solution preserving decomposition S ′ =

{Si = 〈Xi, Di, C
′
i〉}Ni=1 for a constraint system S ∈ C w.r.t any partitioning {Xi}Ni=1

in polynomial time. We show how to obtain a solution σ of S in polynomial time.3 Since
the decomposition S ′ = {Si = 〈Xi, Di, C

′
i〉}Ni=1 can be obtained for any partitioning

of X , we choose the partitioning {Xi}Ni=1 where Xi = {xi} for i = 1, 2, . . . , N . Since
the decomposition can be obtained in polynomial time, it follows that |

⋃
i=1...N C

′
i| is

polynomially bounded in the size of the input S. Hence, the resulting decomposed sub-
systems Si each consist of a polynomially bounded set of unary constraints. It is well

3 The case where S is inconsistent is easy and omitted, here.
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known that such constraint systems are solvable in polynomial time [CGJ06]. There-
fore, in polynomial time for each subsystem Si an arbitrary value di ∈ Di for xi can be
obtained, satisfying all constraints. Let σi = {xi ← di} denote the solution obtained
for Si. Since S ′ = {Si = 〈Xi, Di, C

′
i〉}Ni=1 is a solution preserving decomposition, the

merging σ = σ1 tσ2 t . . .tσN must be a solution of S as well. Therefore, σ is a solu-
tion of S , too. Hence, given a polynomial algorithm for achieving a solution preserving
decomposition, we can construct a solution σ ∈ Sol(S) in polynomial time. �

Given the equivalence between solution preserving and consistency preserving con-
straint systems, we now may conclude:

Theorem 1. Finding a strictly consistency preserving decomposition as well as finding
a strictly solution preserving decomposition for a constraint system S is as hard as
finding a solution for it.

5 Conclusions and implications

We would like to point out that our results can be used to explain special results that
have been obtained in investigating decompositions of constraint systems. First of all, in
the special case of Simple Temporal Networks (STNs), Hunsberger [Hun02] essentially
showed that there exists a polynomial algorithm for finding solution preserving decom-
positions. This result should not come as a surprise given the results we have shown
above and the fact that finding a solution for STNs is solvable in polynomial time. Sec-
ondly, in [BKV04] it is shown that a safe decomposition can be easily found in case
the constraints are linear arithmetic constraints. Again, this result is a simple conse-
quence of the relationship between finding decompositions of a system S and finding
solutions for it. Finally, there exists some work on decomposition in plan coordination
[tMYWZ09], where one is looking for decompositions that enable agents to plan in-
dependently from each other. This work can be best conceived as finding consistency
preserving decompositions, where restrictions are imposed on the type of constraints
that might be added by the individual planners.
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Statuten

Artikel 1.
1. De vereniging draagt de naam: ”Nederlandse Vereniging voor Theoretische Informatica”.
2. Zij heeft haar zetel te Amsterdam.
3. De vereniging is aangegaan voor onbepaalde tijd.
4. De vereniging stelt zich ten doel de theoretische informatica te bevorderen haar beoefening
en haar toepassingen aan te moedigen.
Artikel 2.
De vereniging kent gewone leden en ereleden. Ereleden worden benoemd door het bestuur.
Artikel 3.
De vereniging kan niet worden ontbonden dan met toestemming van tenminste drievierde
van het aantal gewone leden.
Artikel 4.
Het verenigingsjaar is het kalenderjaar.
Artikel 5.
De vereniging tracht het doel omschreven in artikel 1 te bereiken door
a. het houden van wetenschappelijke vergaderingen en het organiseren van symposia en
congressen;
b. het uitgeven van een of meer tijdschriften, waaronder een nieuwsbrief of vergelijkbaar
informatiemedium;
c. en verder door alle zodanige wettige middelen als in enige algemene vergadering goedgevon-
den zal worden.
Artikel 6.
1. Het bestuur schrijft de in artikel 5.a bedoelde bijeenkomsten uit en stelt het programma
van elk van deze bijeenkomsten samen.
2. De redacties der tijdschriften als bedoeld in artikel 5.b worden door het bestuur benoemd.
Artikel 7.
Iedere natuurlijke persoon kan lid van de vereniging worden. Instellingen hebben geen
stemrecht.
Artikel 8.
Indien enig lid niet langer als zodanig wenst te worden beschouwd, dient hij de ledenadmin-
istratie van de vereniging daarvan kennis te geven.
Artikel 9.
Ieder lid ontvangt een exemplaar der statuten, opgenomen in de nieuwsbrief van de verenig-
ing. Een exemplaar van de statuten kan ook opgevraagd worden bij de secretaris. Ieder lid
ontvangt de tijdschriften als bedoeld in artikel 5.b.
Artikel 10.
Het bestuur bestaat uit tenminste zes personen die direct door de jaarvergadering worden
gekozen, voor een periode van drie jaar. Het bestuur heeft het recht het precieze aantal
bestuursleden te bepalen. Bij de samenstelling van het bestuur dient rekening gehouden te
worden met de wenselijkheid dat vertegenwoordigers van de verschillende werkgebieden van
de theoretische informatica in Nederland in het bestuur worden opgenomen. Het bestuur
kiest uit zijn midden de voorzitter, secretaris en penningmeester.
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Artikel 11.
Eens per drie jaar vindt een verkiezing plaats van het bestuur door de jaarvergadering. De
door de jaarvergadering gekozen bestuursleden hebben een zittingsduur van maximaal twee
maal drie jaar. Na deze periode zijn zij niet terstond herkiesbaar, met uitzondering van
secretaris en penningmeester. De voorzitter wordt gekozen voor de tijd van drie jaar en is
na afloop van zijn ambtstermijn niet onmiddellijk als zodanig herkiesbaar. In zijn functie
als bestuurslid blijft het in de vorige alinea bepaalde van kracht.
Artikel 12.
Het bestuur stelt de kandidaten voor voor eventuele vacatures. Kandidaten kunnen ook
voorgesteld worden door gewone leden, minstens een maand voor de jaarvergadering via de
secretaris. Dit dient schriftelijk te gebeuren op voordracht van tenminste vijftien leden. In
het geval dat het aantal kandidaten gelijk is aan het aantal vacatures worden de gestelde
kandidaten door de jaarvergadering in het bestuur gekozen geacht. Indien het aantal kan-
didaten groter is dan het aantal vacatures wordt op de jaarvergadering door schriftelijke
stemming beslist. Ieder aanwezig lid brengt een stem uit op evenveel kandidaten als er va-
catures zijn. Van de zo ontstane rangschikking worden de kandidaten met de meeste punten
verkozen, tot het aantal vacatures. Hierbij geldt voor de jaarvergadering een quorum van
dertig. In het geval dat het aantal aanwezige leden op de jaarvergadering onder het quorum
ligt, kiest het zittende bestuur de nieuwe leden. Bij gelijk aantal stemmen geeft de stem van
de voorzitter (of indien niet aanwezig, van de secretaris) de doorslag.
Artikel 13.
Het bestuur bepaalt elk jaar het precieze aantal bestuursleden, mits in overeenstemming
met artikel 10. In het geval van aftreden of uitbreiding wordt de zo ontstane vacature
aangekondigd via mailing of nieuwsbrief, minstens twee maanden voor de eerstvolgende
jaarvergadering. Kandidaten voor de ontstane vacatures worden voorgesteld door bestuur
en gewone leden zoals bepaald in artikel 12. Bij aftreden van bestuursleden in eerste of
tweede jaar van de driejarige cyclus worden de vacatures vervuld op de eerstvolgende jaarver-
gadering. Bij aftreden in het derde jaar vindt vervulling van de vacatures plaats tegelijk
met de algemene driejaarlijkse bestuursverkiezing. Voorts kan het bestuur beslissen om
vervanging van een aftredend bestuurslid te laten vervullen tot de eerstvolgende jaarver-
gadering. Bij uitbreiding van het bestuur in het eerste of tweede jaar van de cyclus worden
de vacatures vervuld op de eerstvolgende jaarvergadering. Bij uitbreiding in het derde jaar
vindt vervulling van de vacatures plaats tegelijk met de driejaarlijkse bestuursverkiezing.
Bij inkrimping stelt het bestuur vast welke leden van het bestuur zullen aftreden.
Artikel 14.
De voorzitter, de secretaris en de penningmeester vormen samen het dagelijks bestuur. De
voorzitter leidt alle vergaderingen. Bij afwezigheid wordt hij vervangen door de secretaris
en indien ook deze afwezig is door het in jaren oudste aanwezig lid van het bestuur. De
secretaris is belast met het houden der notulen van alle huishoudelijke vergaderingen en met
het voeren der correspondentie.
Artikel 15.
Het bestuur vergadert zo vaak als de voorzitter dit nodig acht of dit door drie zijner leden
wordt gewenst.
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Artikel 16.
Minstens eenmaal per jaar wordt door het bestuur een algemene vergadering bijeengeroepen;
één van deze vergaderingen wordt expliciet aangeduid met de naam van jaarvergadering; deze
vindt plaats op een door het bestuur te bepalen dag en plaats.
Artikel 17.
De jaarvergadering zal steeds gekoppeld zijn aan een wetenschappelijk symposium. De op
het algemene gedeelte vaan de jaarvergadering te behandelen onderwerpen zijn
a. Verslag door de secretaris;
b. Rekening en verantwoording van de penningmeester;
c. Verslagen van de redacties der door de vereniging uitgegeven tijdschriften;
d. Eventuele verkiezing van bestuursleden;
e. Wat verder ter tafel komt. Het bestuur is verplicht een bepaald punt op de agenda van
een algemene vergadering te plaatsen indien uiterlijk vier weken van te voren tenminste
vijftien gewone leden schriftelijk de wens daartoe aan het bestuur te kennen geven.
Artikel 18.
Deze statuten kunnen slechts worden gewijzigd, nadat op een algemene vergadering een
commissie voor statutenwijziging is benoemd. Deze commissie doet binnen zes maanden
haar voorstellen via het bestuur aan de leden toekomen. Gedurende drie maanden daarna
kunnen amendementen schriftelijk worden ingediend bij het bestuur, dat deze ter kennis van
de gewone leden brengt, waarna een algemene vergadering de voorstellen en de ingediende
amendementen behandelt. Ter vergadering kunnen nieuwe amendementen in behandeling
worden genomen, die betrekking hebben op de voorstellen van de commissie of de schriftelijk
ingediende amendementen. Eerst wordt over elk der amendementen afzonderlijk gestemd;
een amendement kan worden aangenomen met gewone meerderheid van stemmen. Het al
dan niet geamendeerde voorstel wordt daarna in zijn geheel in stemming gebracht, tenzij
de vergadering met gewone meerderheid van stemmen besluit tot afzonderlijke stemming
over bepaalde artikelen, waarna de resterende artikelen in hun geheel in stemming gebracht
worden. In beide gevallen kunnen de voorgestelde wijzigingen slechts worden aangenomen
met een meerderheid van tweederde van het aantal uitgebrachte stemmen. Aangenomen
statutenwijzigingen treden onmiddellijk in werking.
Artikel 19.
Op een vergadering worden besluiten genomen bij gewone meerderheid van stemmen, tenzij
deze statuten anders bepalen. Elk aanwezig gewoon lid heeft daarbij het recht een stem uit
te brengen. Stemming over zaken geschiedt mondeling of schriftelijk, die over personen met
gesloten briefjes. Uitsluitend bij schriftelijke stemmingen worden blanco stemmen gerekend
geldig te zijn uitgebracht.
Artikel 20.
a. De jaarvergadering geeft bij huishoudelijk reglement nadere regels omtrent alle onderw-
erpen, waarvan de regeling door de statuten wordt vereist, of de jaarvergadering gewenst
voorkomt.
b. Het huishoudelijk reglement zal geen bepalingen mogen bevatten die afwijken van of die
in strijd zijn met de bepalingen van de wet of van de statuten, tenzij de afwijking door de
wet of de statuten wordt toegestaan.
Artikel 21.
In gevallen waarin deze statuten niet voorzien, beslist het bestuur.
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