Fourier analysis of Boolean functions: Some beautiful examples

Ronald de Wolf

Centrum voor Wiskunde en Informatica
Amsterdam
Many applications in math, physics, engineering,
Fourier analysis

Many applications in math, physics, engineering,

...and in computer science
Fourier analysis

Many applications in math, physics, engineering,

... and in computer science:

- Signal processing
Fourier analysis

Many applications in math, physics, engineering, and in computer science:

- Signal processing
- Data compression
Fourier analysis

- Many applications in math, physics, engineering,

 ... and in computer science:

 - Signal processing
 - Data compression
 - Multiplying two polynomials
Fourier analysis

Many applications in math, physics, engineering, and in computer science:

- Signal processing
- Data compression
- Multiplying two polynomials

These examples use Fourier analysis over cyclic groups
Fourier analysis

Many applications in math, physics, engineering, and in computer science:

- Signal processing
- Data compression
- Multiplying two polynomials

These examples use Fourier analysis over cyclic groups

We will focus on Fourier analysis over the Boolean cube
Fourier analysis

- Many applications in math, physics, engineering, … and in computer science:
 - Signal processing
 - Data compression
 - Multiplying two polynomials

- These examples use Fourier analysis over cyclic groups

- We will focus on Fourier analysis over the Boolean cube \(\{0, 1\}^n \), set of all \(n \)-bit strings
This has been very useful in CS
This has been very useful in CS

- Fourier coefficients measure correlations with parities
This has been very useful in CS

- Fourier coefficients measure correlations with parities
- Analysis of error-correcting codes
This has been very useful in CS

- Fourier coefficients measure correlations with parities
- Analysis of error-correcting codes
- Learning a function from examples
This has been very useful in CS

- Fourier coefficients measure correlations with parities
- Analysis of error-correcting codes
- Learning a function from examples
- The influence of variables on a function
This has been very useful in CS

- Fourier coefficients measure correlations with parities
- Analysis of error-correcting codes
- Learning a function from examples
- The influence of variables on a function
- Sensitivity of a function to noise on the inputs
This has been very useful in CS

- Fourier coefficients measure correlations with parities
- Analysis of error-correcting codes
- Learning a function from examples
- The influence of variables on a function
- Sensitivity of a function to noise on the inputs
- PCPs, NP-hardness of approximation
This has been very useful in CS

- Fourier coefficients measure correlations with parities
- Analysis of error-correcting codes
- Learning a function from examples
- The influence of variables on a function
- Sensitivity of a function to noise on the inputs
- PCPs, NP-hardness of approximation
- Cryptography
This has been very useful in CS

- Fourier coefficients measure correlations with parities
- Analysis of error-correcting codes
- Learning a function from examples
- The influence of variables on a function
- Sensitivity of a function to noise on the inputs
- PCPs, NP-hardness of approximation
- Cryptography
- Lower bounds on communication complexity
This has been very useful in CS

- Fourier coefficients measure correlations with parities
- Analysis of error-correcting codes
- Learning a function from examples
- The influence of variables on a function
- Sensitivity of a function to noise on the inputs
- PCPs, NP-hardness of approximation
- Cryptography
- Lower bounds on communication complexity
- Threshold phenomena in random graphs
This has been very useful in CS

- Fourier coefficients measure correlations with parities
- Analysis of error-correcting codes
- Learning a function from examples
- The influence of variables on a function
- Sensitivity of a function to noise on the inputs
- PCPs, NP-hardness of approximation
- Cryptography
- Lower bounds on communication complexity
- Threshold phenomena in random graphs
- Quantum computing
This has been very useful in CS

- Fourier coefficients measure correlations with parities
- Analysis of error-correcting codes
- Learning a function from examples
- The influence of variables on a function
- Sensitivity of a function to noise on the inputs
- PCPs, NP-hardness of approximation
- Cryptography
- Lower bounds on communication complexity
- Threshold phenomena in random graphs
- Quantum computing
 …
Fourier analysis over the Boolean cube

Consider the space of functions $f : \{0, 1\}^n \rightarrow \mathbb{R}$.
Fourier analysis over the Boolean cube

Consider the space of functions $f : \{0, 1\}^n \rightarrow \mathbb{R}$, with normalized inner product $\langle f, g \rangle = \frac{1}{2^n} \sum_{x \in \{0, 1\}^n} f(x)g(x)$.
Consider the space of functions $f : \{0, 1\}^n \rightarrow \mathbb{R}$, with normalized inner product $\langle f, g \rangle = \frac{1}{2^n} \sum_{x \in \{0, 1\}^n} f(x)g(x)$.

The parity-functions $\chi_s(x) = (-1)^{x \cdot s} = \prod_{i : s_i = 1} (-1)^{x_i}$ form an orthonormal basis of this space.
Fourier analysis over the Boolean cube

- Consider the space of functions $f : \{0, 1\}^n \to \mathbb{R}$, with normalized inner product $\langle f, g \rangle = \frac{1}{2^n} \sum_{x \in \{0,1\}^n} f(x)g(x)$.

- The parity-functions $\chi_s(x) = (-1)^{x \cdot s} = \prod_{i : s_i = 1} (-1)^{x_i}$ form an orthonormal basis of this space.

- Hence we can write $f = \sum_{s \in \{0,1\}^n} \hat{f}(s) \chi_s$.

Fourier analysis of Boolean functions: Some beautiful examples – p.4/13
Consider the space of functions \(f : \{0, 1\}^n \rightarrow \mathbb{R} \), with normalized inner product \(\langle f, g \rangle = \frac{1}{2^n} \sum_{x \in \{0,1\}^n} f(x)g(x) \).

The parity-functions \(\chi_s(x) = (-1)^{x \cdot s} = \prod_{i:s_i=1}(-1)^{x_i} \) form an orthonormal basis of this space.

Hence we can write \(f = \sum_{s \in \{0,1\}^n} \hat{f}(s) \chi_s \)

with \(\hat{f}(s) = \langle f, \chi_s \rangle = \frac{1}{2^n} \sum_{x \in \{0,1\}^n} f(x)\chi_s(x) \).
Consider the space of functions $f : \{0, 1\}^n \to \mathbb{R}$, with normalized inner product $\langle f, g \rangle = \frac{1}{2^n} \sum_{x \in \{0,1\}^n} f(x) g(x)$

The parity-functions $\chi_s(x) = (-1)^{x \cdot s} = \prod_{i:s_i=1} (-1)^{x_i}$ form an orthonormal basis of this space

Hence we can write $f = \sum_{s \in \{0,1\}^n} \hat{f}(s) \chi_s$

with $\hat{f}(s) = \langle f, \chi_s \rangle = \frac{1}{2^n} \sum_{x \in \{0,1\}^n} f(x) \chi_s(x)$

Map $f \mapsto \hat{f}$ is proportional to unitary (length-preserving)
Consider the space of functions \(f : \{0, 1\}^n \rightarrow \mathbb{R} \), with normalized inner product

\[
\langle f, g \rangle = \frac{1}{2^n} \sum_{x \in \{0,1\}^n} f(x)g(x)
\]

The parity-functions \(\chi_s(x) = (-1)^{x \cdot s} = \prod_{i:s_i=1}(-1)^{x_i} \)
form an orthonormal basis of this space.

Hence we can write

\[
f = \sum_{s \in \{0,1\}^n} \hat{f}(s) \chi_s
\]

with \(\hat{f}(s) = \langle f, \chi_s \rangle = \frac{1}{2^n} \sum_{x \in \{0,1\}^n} f(x)\chi_s(x) \)

Map \(f \mapsto \hat{f} \) is proportional to unitary (length-preserving)

\[
\Rightarrow \frac{1}{2^n} \sum_x f(x)^2 = \sum_s \hat{f}(s)^2 \quad (\text{Parseval’s identity})
\]
Examples
Examples

OR on 2 bits:
Examples

OR on 2 bits:

\[f(x_1, x_2) = \text{OR}(x_1, x_2) \in \{0, 1\} \]
Examples

OR on 2 bits:

- $f(x_1, x_2) = \text{OR}(x_1, x_2) \in \{0, 1\}$
- $\hat{f}(00)$
Examples

OR on 2 bits:

\[f(x_1, x_2) = \text{OR}(x_1, x_2) \in \{0, 1\} \]

\[\widehat{f}(00) = \frac{1}{4} \sum_{x \in \{0, 1\}^n} f(x) \chi_{00}(x) \]
Examples

OR on 2 bits:

- \(f(x_1, x_2) = \text{OR}(x_1, x_2) \in \{0, 1\} \)
- \(\hat{f}(00) = \frac{1}{4} \sum_{x \in \{0,1\}^n} f(x) \chi_{00}(x) = \frac{1}{4}(0 + 1 + 1 + 1) \)
Examples

OR on 2 bits:

\[f(x_1, x_2) = \text{OR}(x_1, x_2) \in \{0, 1\} \]

\[\hat{f}(00) = \frac{1}{4} \sum_{x \in \{0,1\}^n} f(x) \chi_{00}(x) = \frac{1}{4}(0 + 1 + 1 + 1) = \frac{3}{4} \]
Examples

OR on 2 bits:

- \(f(x_1, x_2) = \text{OR}(x_1, x_2) \in \{0, 1\} \)
- \(\hat{f}(00) = \frac{1}{4} \sum_{x \in \{0,1\}^n} f(x) \chi_{00}(x) = \frac{1}{4}(0 + 1 + 1 + 1) = \frac{3}{4} \)
- \(\hat{f}(01) = -\frac{1}{4}, \)
Examples

OR on 2 bits:

\[f(x_1, x_2) = \text{OR}(x_1, x_2) \in \{0, 1\} \]

\[\hat{f}(00) = \frac{1}{4} \sum_{x \in \{0,1\}^n} f(x) \chi_{00}(x) = \frac{1}{4}(0 + 1 + 1 + 1) = \frac{3}{4} \]

\[\hat{f}(01) = -\frac{1}{4}, \quad \hat{f}(10) = -\frac{1}{4}, \]
Examples

OR on 2 bits:

- \(f(x_1, x_2) = \text{OR}(x_1, x_2) \in \{0, 1\} \)
- \(\hat{f}(00) = \frac{1}{4} \sum_{x \in \{0,1\}^n} f(x) \chi_{00}(x) = \frac{1}{4} (0 + 1 + 1 + 1) = \frac{3}{4} \)
- \(\hat{f}(01) = -\frac{1}{4}, \hat{f}(10) = -\frac{1}{4}, \hat{f}(11) = -\frac{1}{4} \)
Examples

OR on 2 bits:

- \(f(x_1, x_2) = \text{OR}(x_1, x_2) \in \{0, 1\} \)

- \(\hat{f}(00) = \frac{1}{4} \sum_{x \in \{0,1\}^n} f(x) \chi_{00}(x) = \frac{1}{4}(0 + 1 + 1 + 1) = \frac{3}{4} \)
 - \(\hat{f}(01) = -\frac{1}{4}, \hat{f}(10) = -\frac{1}{4}, \hat{f}(11) = -\frac{1}{4} \)

- **Note:** \(\hat{f}(00) = \text{Exp}_x[f(x)] \)
Examples

OR on 2 bits:

\[f(x_1, x_2) = \text{OR}(x_1, x_2) \in \{0, 1\} \]

\[\hat{f}(00) = \frac{1}{4} \sum_{x \in \{0,1\}^n} f(x) \chi_{00}(x) = \frac{1}{4}(0 + 1 + 1 + 1) = \frac{3}{4} \]

\[\hat{f}(01) = -\frac{1}{4}, \quad \hat{f}(10) = -\frac{1}{4}, \quad \hat{f}(11) = -\frac{1}{4} \]

Note: \(\hat{f}(00) = \text{Exp}_x[f(x)], \) and \(f(00) = \sum_s \hat{f}(s) \)
Examples

OR on 2 bits:

- \(f(x_1, x_2) = \text{OR}(x_1, x_2) \in \{0, 1\} \)

- \(\hat{f}(00) = \frac{1}{4} \sum_{x \in \{0, 1\}^n} f(x) \chi_{00}(x) = \frac{1}{4} (0 + 1 + 1 + 1) = \frac{3}{4} \)

- \(\hat{f}(01) = -\frac{1}{4}, \hat{f}(10) = -\frac{1}{4}, \hat{f}(11) = -\frac{1}{4} \)

- **Note:** \(\hat{f}(00) = \text{Exp}_x[f(x)], \text{ and } f(00) = \sum_s \hat{f}(s) \)

- **Parseval:** \(\frac{1}{4} \sum_x f(x)^2 \)
Examples

OR on 2 bits:

- \(f(x_1, x_2) = \text{OR}(x_1, x_2) \in \{0, 1\} \)

- \(\hat{f}(00) = \frac{1}{4} \sum_{x \in \{0,1\}^n} f(x) \chi_{00}(x) = \frac{1}{4}(0 + 1 + 1 + 1) = \frac{3}{4} \)
 \(\hat{f}(01) = -\frac{1}{4}, \hat{f}(10) = -\frac{1}{4}, \hat{f}(11) = -\frac{1}{4} \)

- **Note:** \(\hat{f}(00) = \exp_x[f(x)], \) and \(f(00) = \sum_s \hat{f}(s) \)

- **Parseval:** \(\frac{1}{4} \sum_x f(x)^2 = \frac{3}{4} \)
Examples

OR on 2 bits:

\[f(x_1, x_2) = \text{OR}(x_1, x_2) \in \{0, 1\} \]

\[\hat{f}(00) = \frac{1}{4} \sum_{x \in \{0,1\}^n} f(x) \chi_{00}(x) = \frac{1}{4}(0 + 1 + 1 + 1) = \frac{3}{4} \]

\[\hat{f}(01) = -\frac{1}{4}, \quad \hat{f}(10) = -\frac{1}{4}, \quad \hat{f}(11) = -\frac{1}{4} \]

Note: \(\hat{f}(00) = \exp_x[f(x)] \), and \(f(00) = \sum_s \hat{f}(s) \)

Parseval: \(\frac{1}{4} \sum_x f(x)^2 = \frac{3}{4} = \sum_s \hat{f}(s)^2 \)
Examples

OR on 2 bits:

\[f(x_1, x_2) = \text{OR}(x_1, x_2) \in \{0, 1\} \]

\[\hat{f}(00) = \frac{1}{4} \sum_{x \in \{0,1\}^n} f(x) \chi_{00}(x) = \frac{1}{4}(0 + 1 + 1 + 1) = \frac{3}{4} \]

\[\hat{f}(01) = -\frac{1}{4}, \quad \hat{f}(10) = -\frac{1}{4}, \quad \hat{f}(11) = -\frac{1}{4} \]

Note: \(\hat{f}(00) = \text{Exp}_x[f(x)] \), and \(f(00) = \sum_s \hat{f}(s) \)

Parseval:

\[\frac{1}{4} \sum_x f(x)^2 = \frac{3}{4} = \sum_s \hat{f}(s)^2 \]

PARITY on \(n \) bits
Examples

OR on 2 bits:

\[f(x_1, x_2) = \text{OR}(x_1, x_2) \in \{0, 1\} \]

\[\hat{f}(00) = \frac{1}{4} \sum_{x \in \{0,1\}^n} f(x) \chi_{00}(x) = \frac{1}{4} (0 + 1 + 1 + 1) = \frac{3}{4} \]

\[\hat{f}(01) = -\frac{1}{4}, \quad \hat{f}(10) = -\frac{1}{4}, \quad \hat{f}(11) = -\frac{1}{4} \]

Note: \(\hat{f}(00) = \text{Exp}_x[f(x)] \), and \(f(00) = \sum_s \hat{f}(s) \)

Parseval:

\[\frac{1}{4} \sum_x f(x)^2 = \frac{3}{4} = \sum_s \hat{f}(s)^2 \]

PARITY on \(n \) bits, with TRUE = −1, FALSE = +1:
Examples

OR on 2 bits:

\[f(x_1, x_2) = \text{OR}(x_1, x_2) \in \{0, 1\} \]

\[\hat{f}(00) = \frac{1}{4} \sum_{x \in \{0,1\}^n} f(x) \chi_{00}(x) = \frac{1}{4}(0 + 1 + 1 + 1) = \frac{3}{4} \]

\[\hat{f}(01) = -\frac{1}{4}, \quad \hat{f}(10) = -\frac{1}{4}, \quad \hat{f}(11) = -\frac{1}{4} \]

Note: \(\hat{f}(00) = \text{Exp}_x[f(x)], \) and \(f(00) = \sum_s \hat{f}(s) \)

Parseval:

\[\frac{1}{4} \sum_x f(x)^2 = \frac{3}{4} = \sum_s \hat{f}(s)^2 \]

PARITY on \(n \) bits, with TRUE = \(-1\), FALSE = \(+1\):

\[f(x) \]
Examples

OR on 2 bits:

- \(f(x_1, x_2) = \text{OR}(x_1, x_2) \in \{0, 1\} \)
- \(\hat{f}(00) = \frac{1}{4} \sum_{x \in \{0,1\}^n} f(x) \chi_{00}(x) = \frac{1}{4}(0 + 1 + 1 + 1) = \frac{3}{4} \)
- \(\hat{f}(01) = -\frac{1}{4}, \hat{f}(10) = -\frac{1}{4}, \hat{f}(11) = -\frac{1}{4} \)
- **Note:** \(\hat{f}(00) = \Exp_x[f(x)], \) and \(f(00) = \sum_s \hat{f}(s) \)
- **Parseval:** \(\frac{1}{4} \sum_x f(x)^2 = \frac{3}{4} = \sum_s \hat{f}(s)^2 \)

PARITY on \(n \) bits, with TRUE= −1, FALSE= +1:

- \(f(x) = \chi_1^n(x) = (-1)^{|x|} \)
Examples

OR on 2 bits:

- $f(x_1, x_2) = \text{OR}(x_1, x_2) \in \{0, 1\}$
- $\hat{f}(00) = \frac{1}{4} \sum_{x \in \{0, 1\}^n} f(x) \chi_{00}(x) = \frac{1}{4}(0 + 1 + 1 + 1) = \frac{3}{4}$
- $\hat{f}(01) = -\frac{1}{4}$, $\hat{f}(10) = -\frac{1}{4}$, $\hat{f}(11) = -\frac{1}{4}$

Note: $\hat{f}(00) = \text{Exp}_x[f(x)]$, and $f(00) = \sum_s \hat{f}(s)$

Parseval: $\frac{1}{4} \sum_x f(x)^2 = \frac{3}{4} = \sum_s \hat{f}(s)^2$

PARITY on n bits, with TRUE = -1, FALSE = $+1$:

- $f(x) = \chi_{1^n}(x) = (-1)^{|x|}$, so $\hat{f}(1^n) = 1$
Examples

OR on 2 bits:

- \(f(x_1, x_2) = \text{OR}(x_1, x_2) \in \{0, 1\} \)
- \(\hat{f}(00) = \frac{1}{4} \sum_{x \in \{0, 1\}^n} f(x) \chi_{00}(x) = \frac{1}{4}(0 + 1 + 1 + 1) = \frac{3}{4} \)
 \(\hat{f}(01) = -\frac{1}{4}, \quad \hat{f}(10) = -\frac{1}{4}, \quad \hat{f}(11) = -\frac{1}{4} \)
- **Note:** \(\hat{f}(00) = \text{Exp}_x[f(x)], \) and \(f(00) = \sum_s \hat{f}(s) \)
- **Parseval:** \(\frac{1}{4} \sum_x f(x)^2 = \frac{3}{4} = \sum_s \hat{f}(s)^2 \)

PARITY on \(n \) bits, with TRUE = −1, FALSE = +1:

- \(f(x) = \chi_{1^n}(x) = (-1)^{|x|}, \) so \(\hat{f}(1^n) = 1 \)
- all other \(\hat{f}(s) \) are 0
(1) Approximating functions with parities
(1) Approximating functions with parities

Suppose $f : \{0, 1\}^n \rightarrow \{\pm 1\}$ has small Fourier degree d.
Suppose \(f : \{0, 1\}^n \rightarrow \{\pm 1\} \) has small Fourier degree \(d \):

\[
f = \sum_{s: |s| \leq d} \hat{f}(s) \chi_s
\]
(1) Approximating functions with parities

Suppose $f : \{0, 1\}^n \rightarrow \{\pm 1\}$ has small Fourier degree d:

$$f = \sum_{s:|s|\leq d} \hat{f}(s) \chi_s$$

Then there exists a parity-function on at most d bits that has non-trivial correlation with f.
(1) Approximating functions with parities

Suppose \(f : \{0, 1\}^n \rightarrow \{\pm 1\} \) has small Fourier degree \(d \):

\[
f = \sum_{s : |s| \leq d} \hat{f}(s) \chi_s
\]

Then there exists a parity-function on at most \(d \) bits that has non-trivial correlation with \(f \).

Why?
(1) Approximating functions with parities

Suppose $f : \{0, 1\}^n \to \{\pm 1\}$ has small Fourier degree d:

$$f = \sum_{s : |s| \leq d} \hat{f}(s) \chi_s$$

Then there exists a parity-function on at most d bits that has non-trivial correlation with f.

Why?

$$\sum_{s : |s| \leq d} \hat{f}(s)^2$$
(1) Approximating functions with parities

Suppose \(f : \{0, 1\}^n \rightarrow \{\pm 1\} \) has small Fourier degree \(d \):

\[
f = \sum_{s : |s| \leq d} \hat{f}(s) \chi_s
\]

Then there exists a parity-function on at most \(d \) bits that has non-trivial correlation with \(f \).

Why? \[
\sum_{s : |s| \leq d} \hat{f}(s)^2 = \frac{1}{2^n} \sum_{x \in \{0, 1\}^n} f(x)^2 = 1 \text{ (Parseval).}
\]
(1) Approximating functions with parities

Suppose \(f : \{0, 1\}^n \rightarrow \{\pm 1\} \) has small Fourier degree \(d \):

\[
f = \sum_{s : |s| \leq d} \hat{f}(s) \chi_s
\]

Then there exists a parity-function on at most \(d \) bits that has non-trivial correlation with \(f \)

Why? \[
\sum_{s : |s| \leq d} \hat{f}(s)^2 = \frac{1}{2^n} \sum_{x \in \{0,1\}^n} f(x)^2 = 1 \text{ (Parseval)}.
\]

This is a sum over \(\leq n^d \) terms.
Suppose $f : \{0, 1\}^n \to \{\pm 1\}$ has small Fourier degree d:

$$f = \sum_{s:|s|\leq d} \hat{f}(s) \chi_s$$

Then there exists a parity-function on at most d bits that has non-trivial correlation with f.

Why? \[\sum_{s:|s|\leq d} \hat{f}(s)^2 = \frac{1}{2^n} \sum_{x\in\{0,1\}^n} f(x)^2 = 1 \text{ (Parseval)}. \]

This is a sum over $\leq n^d$ terms. Hence $\exists s$ with
(1) Approximating functions with parities

- Suppose \(f : \{0, 1\}^n \rightarrow \{\pm 1\} \) has small Fourier degree \(d \):

 \[
 f = \sum_{s : |s| \leq d} \hat{f}(s) \chi_s
 \]

- Then there exists a parity-function on at most \(d \) bits that has non-trivial correlation with \(f \).

- Why? \(\sum_{s : |s| \leq d} \hat{f}(s)^2 = \frac{1}{2^n} \sum_{x \in \{0,1\}^n} f(x)^2 = 1 \) (Parseval).

 This is a sum over \(\leq n^d \) terms. Hence \(\exists s \) with

 \[
 \frac{1}{n^d} \leq \hat{f}(s)^2
 \]
(1) Approximating functions with parities

Suppose \(f : \{0, 1\}^n \to \{\pm 1\} \) has small Fourier degree \(d \):

\[
f = \sum_{s : |s| \leq d} \hat{f}(s) \chi_s
\]

Then there exists a parity-function on at most \(d \) bits that has non-trivial correlation with \(f \).

Why? \[\sum_{s : |s| \leq d} \hat{f}(s)^2 = \frac{1}{2^n} \sum_{x \in \{0,1\}^n} f(x)^2 = 1 \text{ (Parseval)}. \]

This is a sum over \(\leq n^d \) terms. Hence \(\exists s \) with

\[
\frac{1}{n^d} \leq \hat{f}(s)^2 = \frac{1}{2^n} \sum_{x \in \{0,1\}^n} f(x) \chi_s(x)^2
\]
(1) Approximating functions with parities

Suppose \(f : \{0, 1\}^n \to \{\pm 1\} \) has small Fourier degree \(d \):

\[
f = \sum_{s:|s| \leq d} \hat{f}(s) \chi_s
\]

Then there exists a parity-function on at most \(d \) bits that has non-trivial correlation with \(f \).

Why? \(\sum_{s:|s| \leq d} \hat{f}(s)^2 = \frac{1}{2^n} \sum_{x \in \{0,1\}^n} f(x)^2 = 1 \) (Parseval).

This is a sum over \(\leq n^d \) terms. Hence \(\exists s \) with

\[
\frac{1}{n^d} \leq \hat{f}(s)^2 = |\frac{1}{2^n} \sum_{x \in \{0,1\}^n} f(x) \chi_s(x)|^2
\]

So \(\chi_s \) (or its negation) has non-trivial correlation with \(f \).
(2) Learning from uniform examples
(2) Learning from uniform examples

- A Fourier coefficient is just a uniform expectation
(2) Learning from uniform examples

A Fourier coefficient is just a uniform expectation:

\[
\hat{f}(s) = \frac{1}{2^n} \sum_{x \in \{0,1\}^n} f(x) \chi_s(x)
\]
A Fourier coefficient is just a uniform expectation:

$$\hat{f}(s) = \frac{1}{2^n} \sum_{x \in \{0,1\}^n} f(x) \chi_s(x) = \operatorname{Exp}_x[f(x)\chi_s(x)]$$
(2) Learning from uniform examples

A Fourier coefficient is just a uniform expectation:

\[\hat{f}(s) = \frac{1}{2^n} \sum_{x \in \{0,1\}^n} f(x) \chi_s(x) = \text{Exp}_x[f(x)\chi_s(x)] \]

We can approximate this given uniformly random examples \((x^1, f(x^1)), \ldots, (x^m, f(x^m))\):
(2) Learning from uniform examples

A Fourier coefficient is just a uniform expectation:

\[\hat{f}(s) = \frac{1}{2^n} \sum_{x \in \{0,1\}^n} f(x) \chi_s(x) = \operatorname{Exp}_x[f(x)\chi_s(x)] \]

We can approximate this given uniformly random examples \((x^1, f(x^1)), \ldots, (x^m, f(x^m)):\)

\[\frac{1}{m} \sum_{i=1}^{m} f(x^i) \chi_s(x^i) \]
(2) Learning from uniform examples

- A Fourier coefficient is just a uniform expectation:

\[\hat{f}(s) = \frac{1}{2^n} \sum_{x \in \{0,1\}^n} f(x) \chi_s(x) = \text{Exp}_x[f(x)\chi_s(x)] \]

- We can approximate this given uniformly random examples \((x^1, f(x^1)), \ldots, (x^m, f(x^m))\):

\[\frac{1}{m} \sum_{i=1}^m f(x^i) \chi_s(x^i) \to \hat{f}(s) \]
(2) Learning from uniform examples

- A Fourier coefficient is just a uniform expectation:

\[\hat{f}(s) = \frac{1}{2^n} \sum_{x \in \{0,1\}^n} f(x) \chi_s(x) = \text{Exp}_{x}[f(x)\chi_s(x)] \]

- We can approximate this given uniformly random examples \((x^1, f(x^1)), \ldots, (x^m, f(x^m))\):

\[\frac{1}{m} \sum_{i=1}^m f(x^i) \chi_s(x^i) \rightarrow \hat{f}(s) \]

- Converges fast if \(|\hat{f}(s)|\) is not too small (Chernoff)
(2) Learning from uniform examples

- A Fourier coefficient is just a uniform expectation:

\[
\hat{f}(s) = \frac{1}{2^n} \sum_{x \in \{0,1\}^n} f(x) \chi_s(x) = \text{Exp}_x[f(x)\chi_s(x)]
\]

- We can approximate this given uniformly random examples \((x^1, f(x^1)), \ldots, (x^m, f(x^m))\):

\[
\frac{1}{m} \sum_{i=1}^{m} f(x^i) \chi_s(x^i) \rightarrow \hat{f}(s)
\]

- Converges fast if \(|\hat{f}(s)|\) is not too small (Chernoff)

- Hence we can quickly learn (approximate) an unknown function \(f\) that is dominated by a few large coefficients
(2) Learning from uniform examples

- A Fourier coefficient is just a uniform expectation:

\[
\hat{f}(s) = \frac{1}{2^n} \sum_{x \in \{0,1\}^n} f(x) \chi_s(x) = \text{Exp}_x [f(x) \chi_s(x)]
\]

- We can approximate this given uniformly random examples \((x^1, f(x^1)), \ldots, (x^m, f(x^m))\):

\[
\frac{1}{m} \sum_{i=1}^{m} f(x^i) \chi_s(x^i) \to \hat{f}(s)
\]

- Converges fast if \(|\hat{f}(s)|\) is not too small (Chernoff)

- Hence we can quickly learn (approximate) an unknown function \(f\) that is dominated by a few large coefficients (example from LMN 89: AC\(_0\)-circuits)
(3) List-decoding of Hadamard code
(3) List-decoding of Hadamard code

- Error-correcting code: \(E : \{0, 1\}^n \rightarrow \{0, 1\}^m \)
(3) List-decoding of Hadamard code

- **Error-correcting code:** \(E : \{0, 1\}^n \rightarrow \{0, 1\}^m \)
- If all codewords have distance \(d(E(x), E(y)) \geq 2e + 1 \), then we can uniquely recover \(x \) from corrupted codeword \(w \in \{0, 1\}^m \) with \(e \) errors
(3) List-decoding of Hadamard code

- Error-correcting code: $E : \{0, 1\}^n \rightarrow \{0, 1\}^m$

- If all codewords have distance $d(E(x), E(y)) \geq 2e + 1$, then we can uniquely recover x from corrupted codeword $w \in \{0, 1\}^m$ with e errors ($d(w, E(x)) = e$)
(3) List-decoding of Hadamard code

- **Error-correcting code:** $E : \{0, 1\}^n \rightarrow \{0, 1\}^m$

- If all codewords have distance $d(E(x), E(y)) \geq 2e + 1$, then we can uniquely recover x from corrupted codeword $w \in \{0, 1\}^m$ with e errors ($d(w, E(x)) = e$)

- **Hadamard code** ($m = 2^n$):
(3) List-decoding of Hadamard code

- **Error-correcting code**: $E : \{0, 1\}^n \rightarrow \{0, 1\}^m$

- If all codewords have distance $d(E(x), E(y)) \geq 2e + 1$, then we can uniquely recover x from corrupted codeword $w \in \{0, 1\}^m$ with e errors ($d(w, E(x)) = e$)

- **Hadamard code** ($m = 2^n$): $E(x)_y = x \cdot y \mod 2$
(3) List-decoding of Hadamard code

- **Error-correcting code**: \(E : \{0, 1\}^n \rightarrow \{0, 1\}^m \)
- If all codewords have distance \(d(E(x), E(y)) \geq 2e + 1 \), then we can uniquely recover \(x \) from corrupted codeword \(w \in \{0, 1\}^m \) with \(e \) errors \((d(w, E(x)) = e) \)
- **Hadamard code** \((m = 2^n)\): \(E(x)_y = x \cdot y \mod 2 \)
- All codewords are at distance \(m/2 \)
(3) List-decoding of Hadamard code

- **Error-correcting code:** \(E : \{0, 1\}^n \rightarrow \{0, 1\}^m \)

- If all codewords have distance \(d(E(x), E(y)) \geq 2e + 1 \), then we can uniquely recover \(x \) from corrupted codeword \(w \in \{0, 1\}^m \) with \(e \) errors \((d(w, E(x)) = e) \)

- **Hadamard code** \((m = 2^n)\): \(E(x)_y = x \cdot y \mod 2 \)

- All codewords are at distance \(m/2 \) \(\Rightarrow \) given \(w \) with \(e < m/4 \) errors, there is a unique \(x \) with \(d(w, E(x)) \leq e \)
(3) List-decoding of Hadamard code

- Error-correcting code: \(E : \{0, 1\}^n \rightarrow \{0, 1\}^m \)
- If all codewords have distance \(d(E(x), E(y)) \geq 2e + 1 \),
 then we can uniquely recover \(x \) from corrupted codeword \(w \in \{0, 1\}^m \) with \(e \) errors (\(d(w, E(x)) = e \))
- Hadamard code \((m = 2^n)\): \(E(x)_y = x \cdot y \mod 2 \)
- All codewords are at distance \(m/2 \) \(\Rightarrow \) given \(w \) with \(e < m/4 \) errors, there is a unique \(x \) with \(d(w, E(x)) \leq e \)
- Problem: if \(e \geq m/4 \) errors, then there may be many different \(x \) with \(d(w, E(x)) \leq e \)
(3) List-decoding of Hadamard code

- **Error-correcting code**: $E : \{0, 1\}^n \rightarrow \{0, 1\}^m$

- If all codewords have distance $d(E(x), E(y)) \geq 2e + 1$, then we can uniquely recover x from corrupted codeword $w \in \{0, 1\}^m$ with e errors ($d(w, E(x)) = e$)

- **Hadamard code** ($m = 2^n$): $E(x)_y = x \cdot y \mod 2$

- All codewords are at distance $m/2 \Rightarrow$ given w with $e < m/4$ errors, there is a unique x with $d(w, E(x)) \leq e$

- Problem: if $e \geq m/4$ errors, then there may be many different x with $d(w, E(x)) \leq e$

- Example: $w = 0^{3m/4}1^{m/4}$ could’ve come from codewords $E(0^n) = 0^m$ or $E(10^{n-1}) = 0^{m/2}1^{m/2}$
Error-correcting code: \(E : \{0, 1\}^n \rightarrow \{0, 1\}^m \)

If all codewords have distance \(d(E(x), E(y)) \geq 2e + 1 \), then we can uniquely recover \(x \) from corrupted codeword \(w \in \{0, 1\}^m \) with \(e \) errors (\(d(w, E(x)) = e \))

Hadamard code \((m = 2^n)\): \(E(x)_y = x \cdot y \mod 2 \)

All codewords are at distance \(m/2 \) \(\Rightarrow \) given \(w \) with \(e < m/4 \) errors, there is a unique \(x \) with \(d(w, E(x)) \leq e \)

Problem: if \(e \geq m/4 \) errors, then there may be many different \(x \) with \(d(w, E(x)) \leq e \)

Example: \(w = 0^{3m/4}1^{m/4} \) could’ve come from codewords \(E(0^n) = 0^m \) or \(E(10^{n-1}) = 0^{m/2}1^{m/2} \)

List-decoding: output the whole list (hopefully small)
List-decoding of Hadamard code (cntd)
List-decoding of Hadamard code (cntd)

List-decoding: given corrupted codeword \(w \in \{0, 1\}^m \) and error bound \(e \), output list \(\{x : d(w, E(x)) \leq e\} \)
List-decoding of Hadamard code (cntd)

- List-decoding: given corrupted codeword $w \in \{0, 1\}^m$ and error bound e, output list $\{x : d(w, E(x)) \leq e\}$.

- For Hadamard code: if $e \leq (1/2 - \varepsilon)m$, then this list has only $O(1/\varepsilon^2)$ elements!
List-decoding of Hadamard code (cntd)

- List-decoding: given corrupted codeword $w \in \{0, 1\}^m$ and error bound e, output list $\{x : d(w, E(x)) \leq e\}$

- For Hadamard code: if $e \leq (1/2 - \varepsilon)m$, then this list has only $O(1/\varepsilon^2)$ elements!

- Why?
List-decoding of Hadamard code (cntd)

- List-decoding: given corrupted codeword $w \in \{0, 1\}^m$ and error bound e, output list $\{x : d(w, E(x)) \leq e\}$

- For Hadamard code: if $e \leq (1/2 - \varepsilon)m$, then this list has only $O(1/\varepsilon^2)$ elements!

- Why? Fourier analysis!
List-decoding of Hadamard code (cntd)

- List-decoding: given corrupted codeword \(w \in \{0, 1\}^m \) and error bound \(e \), output list \(\{x : d(w, E(x)) \leq e\} \)

- For Hadamard code: if \(e \leq (1/2 - \varepsilon)m \), then this list has only \(O(1/\varepsilon^2) \) elements!

- Why? Fourier analysis!
 1. View \(w \) as function \(w : \{0, 1\}^n \rightarrow \{\pm 1\} \), and \(E(s) = \chi_s \)
List-decoding of Hadamard code (cntd)

- List-decoding: given corrupted codeword $w \in \{0, 1\}^m$ and error bound e, output list $\{x : d(w, E(x)) \leq e\}$

- For Hadamard code: if $e \leq (1/2 - \varepsilon)m$, then this list has only $O(1/\varepsilon^2)$ elements!

- Why? Fourier analysis!
 1. View w as function $w : \{0, 1\}^n \rightarrow \{\pm 1\}$, and $E(s) = \chi_s$
 2. If $d(w, E(s)) \leq (1/2 - \varepsilon)m$, then $\hat{w}(s) \geq 2\varepsilon$
List-decoding of Hadamard code (cntd)

- List-decoding: given corrupted codeword \(w \in \{0, 1\}^m \) and error bound \(e \), output list \(\{ x : d(w, E(x)) \leq e \} \)

- For Hadamard code: if \(e \leq (1/2 - \varepsilon)m \), then this list has only \(O(1/\varepsilon^2) \) elements!

- Why? Fourier analysis!
 1. View \(w \) as function \(w : \{0, 1\}^n \rightarrow \{\pm 1\} \), and \(E(s) = \chi_s \)
 2. If \(d(w, E(s)) \leq (1/2 - \varepsilon)m \), then \(\hat{w}(s) \geq 2\varepsilon \)
 3. \(\sum_s \hat{w}(s)^2 = 1 \) (by Parseval)
List-decoding of Hadamard code (cntd)

- List-decoding: given corrupted codeword $w \in \{0, 1\}^m$ and error bound e, output list $\{x : d(w, E(x)) \leq e\}$

- For Hadamard code: if $e \leq (1/2 - \varepsilon)m$, then this list has only $O(1/\varepsilon^2)$ elements!

- Why? Fourier analysis!
 1. View w as function $w : \{0, 1\}^n \rightarrow \{\pm 1\}$, and $E(s) = \chi_s$
 2. If $d(w, E(s)) \leq (1/2 - \varepsilon)m$, then $\hat{w}(s) \geq 2\varepsilon$
 3. $\sum_s \hat{w}(s)^2 = 1$ (by Parseval), hence at most $\frac{1}{4\varepsilon^2}$ different s satisfy $\hat{w}(s) \geq 2\varepsilon$
List-decoding of Hadamard code (cntd)

- List-decoding: given corrupted codeword \(w \in \{0, 1\}^m \) and error bound \(e \), output list \(\{x : d(w, E(x)) \leq e\} \)

- For Hadamard code: if \(e \leq (1/2 - \varepsilon)m \), then this list has only \(O(1/\varepsilon^2) \) elements!

- Why? Fourier analysis!
 1. View \(w \) as function \(w : \{0, 1\}^n \rightarrow \{\pm 1\} \), and \(E(s) = \chi_s \)
 2. If \(d(w, E(s)) \leq (1/2 - \varepsilon)m \), then \(\hat{w}(s) \geq 2\varepsilon \)
 3. \(\sum_s \hat{w}(s)^2 = 1 \) (by Parseval), hence at most \(\frac{1}{4\varepsilon^2} \) different \(s \) satisfy \(\hat{w}(s) \geq 2\varepsilon \)

- Goldreich and Levin show how to find this list efficiently
List-decoding of Hadamard code (cntd)

- List-decoding: given corrupted codeword \(w \in \{0, 1\}^m \) and error bound \(e \), output list \(\{ x : d(w, E(x)) \leq e \} \)

- For Hadamard code: if \(e \leq (1/2 - \varepsilon)m \), then this list has only \(O(1/\varepsilon^2) \) elements!

- Why? Fourier analysis!
 1. View \(w \) as function \(w : \{0, 1\}^n \rightarrow \{\pm 1\} \), and \(E(s) = \chi_s \)
 2. If \(d(w, E(s)) \leq (1/2 - \varepsilon)m \), then \(\hat{w}(s) \geq 2\varepsilon \)
 3. \(\sum_s \hat{w}(s)^2 = 1 \) (by Parseval), hence at most \(\frac{1}{4\varepsilon^2} \) different \(s \) satisfy \(\hat{w}(s) \geq 2\varepsilon \)

- Goldreich and Levin show how to find this list efficiently

- There are codes with much better rate that are still efficiently list-decodable
List-decoding of Hadamard code (cntd)

- List-decoding: given corrupted codeword \(w \in \{0, 1\}^m \) and error bound \(e \), output list \(\{x : d(w, E(x)) \leq e\} \)

- For Hadamard code: if \(e \leq (1/2 - \varepsilon)m \), then this list has only \(O(1/\varepsilon^2) \) elements!

- Why? Fourier analysis!
 1. View \(w \) as function \(w : \{0, 1\}^n \to \{\pm 1\} \), and \(E(s) = \chi_s \)
 2. If \(d(w, E(s)) \leq (1/2 - \varepsilon)m \), then \(\hat{w}(s) \geq 2\varepsilon \)
 3. \(\sum_s \hat{w}(s)^2 = 1 \) (by Parseval), hence at most \(\frac{1}{4\varepsilon^2} \) different \(s \) satisfy \(\hat{w}(s) \geq 2\varepsilon \)

- Goldreich and Levin show how to find this list efficiently

- There are codes with much better rate that are still efficiently list-decodable (e.g. Reed-Solomon)
(4) Influence of variables
(4) Influence of variables

Consider a Boolean function $f : \{0, 1\}^n \rightarrow \{0, 1\}$
(4) Influence of variables

- Consider a Boolean function $f : \{0, 1\}^n \rightarrow \{0, 1\}$
- The influence of variable i is the probability that x_i determines the function value
(4) Influence of variables

- Consider a Boolean function $f : \{0, 1\}^n \rightarrow \{0, 1\}$

- The influence of variable i is the probability that x_i determines the function value:

$$\text{Inf}_f(i) = \Pr_{x \in \{0,1\}^n} [f(x) \neq f(x \oplus e_i)]$$
Consider a Boolean function $f : \{0, 1\}^n \to \{0, 1\}$.

The influence of variable i is the probability that x_i determines the function value:

$$\text{Inf}_f(i) = \Pr_{x \in \{0,1\}^n} [f(x) \neq f(x \oplus e_i)]$$

For things like voting and distributed coin-flipping: would like to find a balanced f where each $\text{Inf}_f(i) \approx 1/n$.
(4) Influence of variables

- Consider a Boolean function $f : \{0, 1\}^n \to \{0, 1\}$
- The influence of variable i is the probability that x_i determines the function value:

$$\text{Inf}_f(i) = \Pr_{x \in \{0, 1\}^n} [f(x) \neq f(x \oplus e_i)]$$

- For things like voting and distributed coin-flipping: would like to find a balanced f where each $\text{Inf}_f(i) \approx 1/n$
- KKL 88: if f is balanced, then there always is an i with $\text{Inf}_f(i) \geq \log(n)/n$
Consider a Boolean function $f : \{0, 1\}^n \rightarrow \{0, 1\}$

The influence of variable i is the probability that x_i determines the function value:

$$\text{Inf}_f(i) = \Pr_{x \in \{0,1\}^n} [f(x) \neq f(x \oplus e_i)]$$

For things like voting and distributed coin-flipping: would like to find a balanced f where each $\text{Inf}_f(i) \approx 1/n$

KKL 88: if f is balanced, then there always is an i with $\text{Inf}_f(i) \geq \log(n)/n$

This implies there is a set of $O(n/\log(n))$ variables that controls f with high probability
The KKL proof
The KKL proof

Define $f_i(x) = f(x) - f(x \oplus e_i)$
The KKL proof

Define \(f_i(x) = f(x) - f(x \oplus e_i) \in \{-1, 0, +1\} \)
The KKL proof

- Define \(f_i(x) = f(x) - f(x \oplus e_i) \in \{-1, 0, +1\} \)
- Then \(\widehat{f_i}(s) = 2\widehat{f}(s) \) if \(s_i = 1 \)
The KKL proof

1. Define $f_i(x) = f(x) - f(x \oplus e_i) \in \{-1, 0, +1\}$
2. Then $\hat{f}_i(s) = 2\hat{f}(s)$ if $s_i = 1$, and $\hat{f}_i(s) = 0$ if $s_i = 0$
The KKL proof

- Define $f_i(x) = f(x) - f(x \oplus e_i) \in \{-1, 0, +1\}$
- Then $\hat{f_i}(s) = 2\hat{f}(s)$ if $s_i = 1$, and $\hat{f_i}(s) = 0$ if $s_i = 0$
- $\inf_f(i)$
The KKL proof

- Define \(f_i(x) = f(x) - f(x \oplus e_i) \in \{-1, 0, +1\} \)
- Then \(\hat{f}_i(s) = 2\hat{f}(s) \) if \(s_i = 1 \), and \(\hat{f}_i(s) = 0 \) if \(s_i = 0 \)
- \(\text{Inf}_f(i) = \text{Pr}[f_i \neq 0] \)
The KKL proof

- Define $f_i(x) = f(x) - f(x \oplus e_i) \in \{-1, 0, +1\}$
- Then $\hat{f}_i(s) = 2\hat{f}(s)$ if $s_i = 1$, and $\hat{f}_i(s) = 0$ if $s_i = 0$
- $\Inf_f(i) = \Pr[f_i \neq 0] = \Exp[f_i^2]$
The KKL proof

- Define \(f_i(x) = f(x) - f(x \oplus e_i) \in \{-1, 0, +1\} \)
- Then \(\hat{f}_i(s) = 2\hat{f}(s) \) if \(s_i = 1 \), and \(\hat{f}_i(s) = 0 \) if \(s_i = 0 \)
- \(\text{Inf}_f(i) = \Pr[f_i \neq 0] = \text{Exp}[f_i^2] = \sum_s \hat{f}_i(s)^2 \)
The KKL proof

- Define $f_i(x) = f(x) - f(x \oplus e_i) \in \{-1, 0, +1\}$
- Then $\hat{f}_i(s) = 2\hat{f}(s)$ if $s_i = 1$, and $\hat{f}_i(s) = 0$ if $s_i = 0$
- $\text{Inf}_f(i) = \Pr[f_i \neq 0] = \text{Exp}[f_i^2] = \sum_s \hat{f}_i(s)^2 = 4 \sum_{s: s_i = 1} \hat{f}(s)^2$
The KKL proof

- Define \(f_i(x) = f(x) - f(x \oplus e_i) \in \{-1, 0, +1\} \)
- Then \(\hat{f}_i(s) = 2\hat{f}(s) \) if \(s_i = 1 \), and \(\hat{f}_i(s) = 0 \) if \(s_i = 0 \)
- \(\text{Inf}_f(i) = \Pr[f_i \neq 0] = \text{Exp}[f_i^2] = \sum_s \hat{f}_i(s)^2 = 4 \sum_{s: s_i = 1} \hat{f}(s)^2 \)
- If \(L = \sum_{s: |s| > \log n} \hat{f}(s)^2 \geq 1/3 \)
The KKL proof

Define \(f_i(x) = f(x) - f(x \oplus e_i) \in \{-1, 0, +1\} \)

Then \(\hat{f}_i(s) = 2\hat{f}(s) \) if \(s_i = 1 \), and \(\hat{f}_i(s) = 0 \) if \(s_i = 0 \)

\[\text{Inf}_f(i) = \Pr[f_i \neq 0] = \text{Exp}[f_i^2] = \sum_{s} \hat{f}_i(s)^2 = 4 \sum_{s: s_i = 1} \hat{f}(s)^2 \]

If \(L = \sum_{s: |s| > \log n} \hat{f}(s)^2 \geq 1/3 \), then \(\sum_{i=1}^{n} \text{Inf}_f(i) \)
The KKL proof

- Define \(f_i(x) = f(x) - f(x \oplus e_i) \in \{-1, 0, +1\} \)
- Then \(\hat{f}_i(s) = 2\hat{f}(s) \) if \(s_i = 1 \), and \(\hat{f}_i(s) = 0 \) if \(s_i = 0 \)
- \(\text{Inf}_f(i) = \Pr[f_i \neq 0] = \text{Exp}[f_i^2] = \sum_s \hat{f}_i(s)^2 = 4 \sum_{s:s_i=1} \hat{f}(s)^2 \)
- If \(L = \sum_{s:|s|>\log n} \hat{f}(s)^2 \geq 1/3 \), then \(\sum_{i=1}^n \text{Inf}_f(i) = 4 \sum_s |s|\hat{f}(s)^2 \)
The KKL proof

- Define \(f_i(x) = f(x) - f(x \oplus e_i) \in \{-1, 0, +1\} \)
- Then \(\hat{f}_i(s) = 2\hat{f}(s) \) if \(s_i = 1 \), and \(\hat{f}_i(s) = 0 \) if \(s_i = 0 \)
- \(\text{Inf}_f(i) = \Pr[f_i \neq 0] = \text{Exp}[f_i^2] = \sum_s \hat{f}_i(s)^2 = 4 \sum_{s: s_i=1} \hat{f}(s)^2 \)
- If \(L = \sum_{s: |s| > \log n} \hat{f}(s)^2 \geq 1/3 \), then \(\sum_{i=1}^n \text{Inf}_f(i) \)
 \[= 4 \sum_s |s| \hat{f}(s)^2 \geq \Omega(\log n) \]
Define \(f_i(x) = f(x) - f(x \oplus e_i) \in \{-1, 0, +1\} \)

Then \(\hat{f}_i(s) = 2\hat{f}(s) \) if \(s_i = 1 \), and \(\hat{f}_i(s) = 0 \) if \(s_i = 0 \)

\[\text{Inf}_f(i) = \Pr[f_i \neq 0] = \mathbb{E}[f_i^2] = \sum_s \hat{f}_i(s)^2 = 4 \sum_{s:s_i=1} \hat{f}(s)^2 \]

If \(L = \sum_{s:|s|>\log n} \hat{f}(s)^2 \geq 1/3 \), then \(\sum_{i=1}^{n} \text{Inf}_f(i) \)

\[= 4 \sum_s |s|\hat{f}(s)^2 \geq \Omega(\log n) \Rightarrow \max_i \text{Inf}_f(i) \geq \Omega(\log(n)/n) \]
The KKL proof

• Define \(f_i(x) = f(x) - f(x \oplus e_i) \in \{-1, 0, +1\} \)

• Then \(\hat{f}_i(s) = 2\hat{f}(s) \) if \(s_i = 1 \), and \(\hat{f}_i(s) = 0 \) if \(s_i = 0 \)

• \(\text{Inf}\ f(i) = \Pr[f_i \neq 0] = \text{Exp}[f_i^2] = \sum_s \hat{f}_i(s)^2 = 4 \sum_{s:s_i=1} \hat{f}(s)^2 \)

• If \(L = \sum_{s:|s|>\log n} \hat{f}(s)^2 \geq 1/3 \), then \(\sum_{i=1}^n \text{Inf}\ f(i) \)

 \[= 4 \sum_s |s| \hat{f}(s)^2 \geq \Omega(\log n) \Rightarrow \max_i \text{Inf}\ f(i) \geq \Omega(\log(n)/n) \]

• If \(L < 1/3 \), then use KKL inequality (special case of Bonami-Beckner):
The KKL proof

- Define \(f_i(x) = f(x) - f(x \oplus e_i) \in \{-1, 0, +1\} \)

- Then \(\hat{f}_i(s) = 2\hat{f}(s) \) if \(s_i = 1 \), and \(\hat{f}_i(s) = 0 \) if \(s_i = 0 \)

- \(\text{Inf}_f(i) = \Pr[f_i \neq 0] = \text{Exp}[f_i^2] = \sum_s \hat{f}_i(s)^2 = 4 \sum_{s:s_i=1} \hat{f}(s)^2 \)

- If \(L = \sum_{s:|s|>\log n} \hat{f}(s)^2 \geq 1/3 \), then \(\sum_{i=1}^n \text{Inf}_f(i) \)
 \(= 4 \sum_s |s|\hat{f}(s)^2 \geq \Omega(\log n) \Rightarrow \max_i \text{Inf}_f(i) \geq \Omega(\log(n)/n) \)

- If \(L < 1/3 \), then use KKL inequality (special case of Bonami-Beckner):
 \(\forall g : \{0, 1\}^n \rightarrow \{-1, 0, +1\}, \delta \in [0, 1] \)

 \[\sum_{s \in \{0,1\}^n} \delta^{|s|} \hat{g}(s)^2 \leq \Pr[g \neq 0]^2/(1+\delta) \]
The KKL proof

- Define \(f_i(x) = f(x) - f(x \oplus e_i) \in \{-1, 0, +1\} \)

- Then \(\hat{f}_i(s) = 2\hat{f}(s) \) if \(s_i = 1 \), and \(\hat{f}_i(s) = 0 \) if \(s_i = 0 \)

- \(\inf_f(i) = \Pr[f_i \neq 0] = \exp[f_i^2] = \sum_s \hat{f}_i(s)^2 = 4 \sum_{s: s_i = 1} \hat{f}(s)^2 \)

- If \(L = \sum_{s: |s| > \log n} \hat{f}(s)^2 \geq 1/3 \), then \(\sum_{i=1}^n \inf_f(i) = 4 \sum_s |s| \hat{f}(s)^2 \geq \Omega(\log n) \Rightarrow \max_i \inf_f(i) \geq \Omega(\log(n)/n) \)

- If \(L < 1/3 \), then use KKL inequality (special case of Bonami-Beckner): \(\forall g: \{0, 1\}^n \rightarrow \{-1, 0, +1\}, \delta \in [0, 1] \)

 \[\sum_{s \in \{0,1\}^n} \delta^{|s|} \hat{g}(s)^2 \leq \Pr[g \neq 0]^2/(1+\delta) \]

 A calculation shows \(\max_i \inf_f(i) \geq \Omega(\log(n)/n) \)
Summary

Fourier analysis of Boolean functions is an increasingly prominent tool in theoretical computer science.
Summary

Fourier analysis of Boolean functions is an increasingly prominent tool in theoretical computer science.

We showed a few simple but beautiful examples:
Summary

Fourier analysis of Boolean functions is an increasingly prominent tool in theoretical computer science.

We showed a few simple but beautiful examples:

1. **Approximating** low-degree functions by parities
Summary

- Fourier analysis of Boolean functions is an increasingly prominent tool in theoretical computer science.

- We showed a few simple but beautiful examples:
 1. Approximating low-degree functions by parities
 2. List-decoding of Hadamard codes
Summary

Fourier analysis of Boolean functions is an increasingly prominent tool in theoretical computer science.

We showed a few simple but beautiful examples:

1. **Approximating** low-degree functions by parities
2. **List-decoding** of Hadamard codes
3. **Learning** under the uniform distribution
Summary

Fourier analysis of Boolean functions is an increasingly prominent tool in theoretical computer science.

We showed a few simple but beautiful examples:

1. **Approximating** low-degree functions by parities
2. **List-decoding** of Hadamard codes
3. **Learning** under the uniform distribution
4. The **influence** of variables on Boolean functions
Warning: these are powerful techniques!

Hi, Dr. Elizabeth?
Yeah, uh... I accidentally took the Fourier transform of my cat...

Meow!